

PSA-3048 RackPack PowerSync® Analyzer IEEE 802.3at Power over Ethernet

Product Overview

Key Features

- 48 Port Bundled PowerSync Analyzer Reduced Cost / Port
- Static PSE Loading > 42 Watts Per Port x 48 Ports
- Flexible Script Automation Supports High Speed PSE Testing
- Soft-Key Upgradeable Test Ports and Features
- Replaces All General Purpose Test Equipment
- Automation Ready with PowerShell Tcl/Wish
- Flexible LLDP (PoE) Emulation and Analysis Upgrade
- Industry Leading IEEE 802.3 PoE PSE Conformance Suite Upgrade
- Unique Fully Automated Multi-Port PSE System Analysis Upgrade
- Graphical User Interface Upgrade
- Flexible and Accurate Measurements of Voltage, Current, Noise
- Noise Immune Triggering and Time Interval Measurements
- Enables PSE Packet Transmission Testing with PoE Loads
- Smart Fan Control Runs Cool and Quiet
- Backward Compatible to Sifos PSA-1200 / PSA-2400 Analyzers

Overview

Power-over-Ethernet (PoE) challenges design and test engineers to evaluate multi-channel, "intelligent" DC power sources that are activated and deactivated through signaling protocols operating over several power delivery and polarity configurations. The application and management of DC power over many local area network connections must be completely transparent and non-disruptive to the traditional data transmission functions of those network connections.

One Box Solution

Sifos Technologies provides a **one-box solution** to facilitate complete testing and analysis of Power Sourcing Equipment (PSE) behaviors and overall compliance to the **IEEE 802.3at** specification. Each test port inside a PowerSync Analyzer is an autonomous and fully isolated instrument offering a rich set of stimulus and measurement resources. Test ports are configured and controlled via a high level automation interface, **PowerShell PSA**, and may also be accessed and managed from an intuitive graphical user interface, **PSA Interactive**.

Automated PSE Conformance Testing

The PSA-3048 may be optioned via a software key to run the world's most advanced **PSE Conformance Test Suite**. This fully automated application applies the PowerSync Analyzer's diverse resources to assess over 60 IEEE 802.3at specification parameters presented in easily readable spreadsheet reports with multi-port statistics and clearly notated pass/fail limit analysis.

Automated PSE System Testing

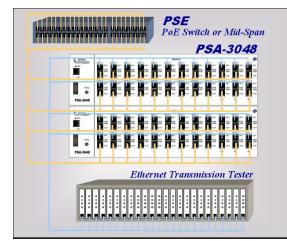
PSA-3048's may also be optioned via software keys to run the one-of-akind **PSE Multi-Port System Performance Suite**. PSE Multi-Port evaluates systems of up to 192 PSE ports simultaneously to assess overall power capacities, multi-port event responses, PSE system decision making and power budgeting, and inter-port interactions and couplings.

LLDP Emulation

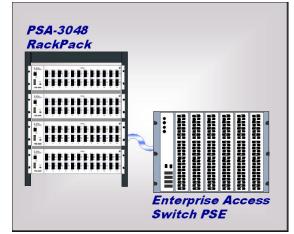
The IEEE 802.3at specification describes new types of PSE's and Powered Devices (PD's) that communicate power needs and power grants using Ethernet layer 2 (LLDP) link protocols. The PSA-3048 is designed with resources to flexibly emulate PD LLDP functions and to analyze LLDP interactions with the PSE. *LLDP emulation may be activated via software keys and will be available via software update from Sifos in the mid-2009 time frame.

Second Generation PoE Solution from Sifos

The PSA-3000 family is a second generation family of products from Sifos specifically developed to address the IEEE 802.3at specification. First generation PSA-1200 products established Sifos as the industry standard world-wide for comprehensive PSE testing and analysis. The PSA-3000 family fully supports test procedures and automation developed for PSA-1200 analyzers while offering increased static and transient load stimuli, higher set point and measurement accuracies, higher resolutions, reliable noise-immune triggering, LLDP emulation, active load foldback suppression, and many other advantages relative to the first generation PowerSync Analyzers from Sifos Technologies.


802.3at End-Span and Mid-Span PSE Development....

Versatile IEEE 802.3at Compliance, DV, and QA Test....


PSE Functional Stressing and Verification....

Fully Automated Manufacturing Verification....

PowerSync Analyzer Test Equipment Setup: PSE Testing

PowerSync Analyzer Test Equipment Setup: Large PSE System QA

Per-Port PSE Test Resources

Flexible PD Detection & Class Emulation

Flexible Loads and Load Transients

- Event or Noise-Immune Edge Triggering of Load Transients & Measurements
- Average, Peak (Min/Max), and Trace Measurements of Port Voltage and Load Current with Flexible Sampling Intervals

Standard One-Button Waveform Library for Rapid PSE Analysis and Conformance Troubleshooting

Flexibly Triggered, Noise-Immune Time Intervals / Slew Rates

O-Scope Graphical Waveforms

Concurrent Packet Transmission and PoE Load Testing External Trigger Input/Output

PSE Multi-Port Testing & QA

Fully Automated PSE System Testing and Analysis Up to 192 PSE Ports

Power Decisions & Management

Power Capacity & Load Stressing

Port Isolation & Independence

PSE Group Timing Behaviors

Flexible PD Emulation

Automated Sequencing

Colorful Spreadsheet Reporting

New IEEE 802.3at PSE Multi-Port Test Suite (including LLDP Emulation options) (Future Release)

LLDP* & LAN Test Support

Flexible, Programmable PD LLDP Emulation for PoE* with control of payloads, timing, and message synchronicity

Multi-Channel Concurrent LLDP Message Generation and Capture

Test Port "Through" Channel for LAN Transmission Testing with or without PoE Port Power

Negligible Through-Channel LAN Impairment

PSE Conformance Suite

High Coverage, Fully Automated IEEE 802.3af PSE Compliance Testing and Analysis

- Over 20 PSE Tests Producing Over 65 PSE Parameters Per Port
- Automated Test and Port Sequencing with Comprehensive, Colorful Spreadsheet Reporting

Automatically Adapts to PSE Device Technologies

Updated with Sifos Tracking Service Agreements

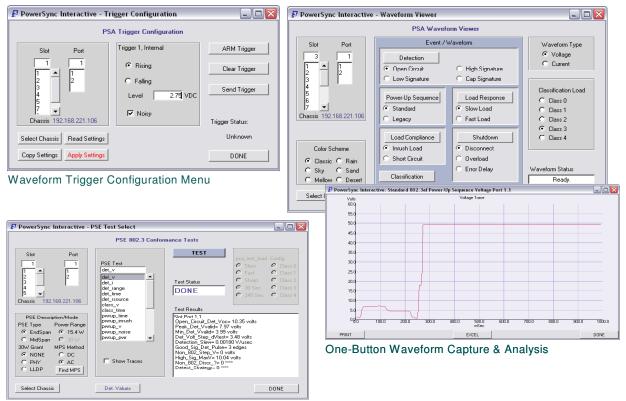
New IEEE 802.3at PSE Conformance Test Suite (including LLDP Emulation options) (Expected Mid-2009)

Powerful Software

PowerShell PSA Script Automation PSA Interactive GUI (*Optional*)

PSA Interactive Graphical User Interface (PSA-3048-GUI)

The optional Sifos PSA Interactive Graphical User Interface (GUI) is a flexible and powerful tool designed to allow user to quickly configure and perform both standard and user-defined measurements on IEEE 802.3 compliant power sourcing equipment (PSE). PSA Interactive provides an intuitive view of the full range of testing resources available within the PSA-3048 PowerSync Analyzer. Users can quickly harness the flexibility and power of these resources to perform design verification and diagnostic measurements or to prototype sequences that will eventually be automated in PowerShell PSA scripts.


PSA Interactive organizes PSA-3048 resources and testing features into twelve distinct subsystems*:

- Port Detection Configuration
- Trigger Configuration
- Load and Load Transient Configuration and Activation
- DC Meters (Average, Max Peak, Min Peak, and Trace Voltage and Current meters)
- AC Peak Voltage Meter
- Time Interval / Slew Rate Meter
- PSE Conformance Tests
- PSE Conformance Test Sequencer
- Standard Waveform Viewer
- Multi-Port, Multi-Chassis Configuration
- PSE Multi-Port Tests
- PSE Multi-Port Test Sequencer

File Config Measure Test Help					
Configuration	Meters	PSE Conformance	PSE Multi-Port		
Port Configuration	DC V-I Meters	PSE Tests	Config Resources		
Trigger Configuration	ACV Meter	Sequencer	PSE Tests		
Load Configuration	Time Interval Meter	Waveforms	Sequencer		
Connected PSA: Configured PSE:					

PSA Interactive enables rapid multi-port configurations and one-button testing and analysis through intuitive subsystem dialogs that flexibly address test ports and PSA chassis'.

PSE Conformance Selected Test Menu

*Note: A new subsystem will be added for LLDP Emulation support when it is available from Sifos.

PowerShell PSA Tcl/Tk Interface

The PowerShell PSA Scripting Environment provides a high level, live-keyboard means to control and program automated test sequences for the PSA-3048 PowerSync Analyzer. PowerShell enables fully automated testing suites that span multiple ports, blades, and frames. Built upon the popular Tool Command Language (Tcl), it offers an extensive and extensible programming language.

PowerShell PSA provides a complete API for the PSA-3048 including high level commands that execute and sequence standard **802.3 PSE Conformance** and **Multi-Port System** test suites. PowerShell commands access all of the resources of the PSA-3048 and enable the rapid development of highly customized test scripts. PowerShell fully supports off-line script development and debug through its robust built-in emulation mode.

PowerShell PSA libraries can be integrated into broader Tcl environments that interlace traditional network transmission tests with Power-over-Ethernet tests. This enables seamless integration of custom or standard PSE tests with existing Tcl-based test suites.

Other features offered by the PowerShell Tcl environment include:

- Interpretive command execution (no compilation, simple debug)
- Simple, intuitive PowerSync Analyzer commands (API)
- Integrated command "help" tools
- Full access to PSA triggering and signal synchronizing features
- Fast test execution speeds
- Script-configured test report files
- Use in tandem with PSA Interactive GUI
- AnyEdit Smart Editor for PowerShell PSA
- Traditional Tcl Console or Command-Knowledgeable Wish Console with PSA waveform viewer capability

PSE Multi-Port System Performance Test Suite (PSA-3048-MPT)

The unique and innovative PSE Multi-Port Test Suite is a library of **fully automated** and **flexibly sequenced** tests that characterize system behaviors of PSE's as they deliver power to groups of many (up to 192) Powered Devices (PD). It enables highly flexible configuration of **PD emulation** characteristics and reports numerous system characteristics including power capacities, power management decisions, port independence and isolation characteristics, port timing characteristics, and stress or burn-in performance.

See Sifos Technologies Multi-Port Test Suite overview for further information regarding the Multi-Port Test Suite.

IEEE 802.3 PSE Conformance Test Suite (PSA-3048-CT)

The IEEE 802.3 PSE Conformance Test Suite is a library of **fully automated**, **flexibly sequenced**, and **self-adapting** tests that provide a high degree of specification compliance testing on PSE ports without the need for any external instrumentation. These tests are accessible to both PSA Interactive (GUI) and to PowerShell.

The **PSE Conformance Test Suite** consists of the following modules for testing **802.3af compliant** (or **802.3at "Type-1**") PSE's:

- Detection Voltages
- Detection Current Compliance
- Detection Acceptance Range (R and C)
- Detection Timing
- > PSE Source Resistance
- Classification Voltage
- Classification Timing
- Power-Up Turn-On and Rise Time
- Power-Up Inrush Compliance
- PSE Voltage and Ripple
- PSE Noise

- PSE Power Capacity
- Short Circuit Compliance
- Overload Transient Response
- DC MPS Validity
- DC MPS Shutdown
- > AC MPS Shutdown
- AC MPS Signal Characteristics
- Overload Shutdown
- Turn-Off Time
- Turn-Off Voltage
- PSE Output Capacitance & Shunt Resistance

Each test captures and reports one or more parameters that are directly related to the IEEE 802.3 specification. Under sequencer control, multiple PSE tests can automatically sequence across multiple PSE ports in accordance with user selections.

The 802.3 **PSE Conformance Test Suite** includes several report generation options including automatic Microsoft Excel spreadsheet that reports test results, test statistics, test limits, and pass/fail results on one or more cycles of testing. An example of a **PSE Conformance Test Suite** test report is shown below:

PSA TEST RESULTS										👌 Sif	 "		802.3af C	onforn	nance Rep	ort
March 29 2009										Techno	os ologies		15.4 Watt			
Port Count Loop Count										roomic		op Index*:				on 3.3
PSE Tested: 8 Port PSE	•									Error Log:						
Chassis ID: 192.168.221.107				P	SA-3000 F	Ports							Low	P/F	High	P/F
TestLoop: 1	1-1	1-2	2-1	2-2	3-1	3-2	4-1	4-2	UNITS	Min	Max	Average	Limit		Limit	
Test: det_v Open_Circuit_Det_Voc-	19.52	19.4	19.5	19.45	19.9	19.9	19.93	19.9	volts	19.4	19.90	19.6075	2.0	Pass	00	Pass
Peak_Det_Vvalid=	6.88		6.91	6.77	6.87	6.95	6.98	6.96	volts	6.77	6.98	6.89875	3.8	Pass	10	Pass
Min_Det_Vvalid=	4.44				4.41	4.47	4.5	4.48	volts	4.37	4.5	4.44	2.8	Pass	9	Pass
Det_Volt_Step_dVtest= Detection_Slew=	2.44		2.45		2.46	2.48 0.00022	2.48	2.48	volts V/usec	2.4	2.48	2.45875		Pass Pass	7.2	
Good_Sig_Det_Pulse=	0.00024	1	1	1	1	1	1	0.00022	edges	1	1	1	1	Pass	9	Pass
Non_802_Step_V=	0		0		0	0	0	0	volts	0	0	0	0	Pass	0.1	Pass
High_Sig_MaxV= Non_802_Discr_?=	10.66				10.66	10.74	10.79	10.72	volts	10.5	10.79	10.6825 C		Pass Pass	11	Pass Pass
Detect_Strategy=	ō				0	0	0	0	****	0	0	C		Pass	2	Pass
Test: det_1	0.21	0.22	0.22	0.21	0.22	0.22	0.22	Π 22		0.21	0.22	0.2175		Pass	<i>r</i>	Pass
Init_Current_Isc= Det_Current_Isc=	0.21			0.21	0.22	0.22	0.22	0.22	mA mA	0.21	0.22	0.2175		Pass	5	Pass
Test: det_range																
Rgood Max= Rgood Min=	30		30	30 15	30 17	30	29 17	29 16	Kohm Kohm	29 15	30	29.625 16.25		Pass Pass	33	Pass Pass
Cgood_Hax=	0.14				0.14	0.14	0.14	0.14	uF	0.14			0	Pass	10	Pass
Test: det_time																
Backoff_Time_Tdbo=	110.6	111.2	111.2	111.5	110.9 110.9	110.8	110.7	110.5	msec	110.5	111.5	110.925 110.925		Pass Pass	1500 1500	Pass Pass
Eff_Backoff_Tdbo_eff= Backoff_Type=	110.6 0	0	111.2 0	0	0	110.8 0	110.7 0	110.5 0	msec ****	0	111.5	110.925	0	Pass	1500	Pass
Detection_Time_Tdet=	203.1		203.1		203.1	207	199.2	207	msec	199.2	207	204.075		Pass	500	Pass
Total_Det_Time= Test: det rsource	214.8	214.8	203.1	210.9	214.8	214.8	199.2	214.8	msec	199.2	214.8	210.9	5	Pass	1000	Pass
Output_Impedance_Zout=	212.9	186	215.9	199.1	215.9	211.8	219	195	KOhm	186	219	206.95	45	Pass	2000	Pass
Test: class_v																
Class_Voltage_Vclass= Mark_Voltage_Vmark=	18.5		18.4	18.3	18.8	18.8	18.9	18.8	volts volts	18.3	18.9	18.6		Pass Pass	20.5	Pass Pass
Test: class time	-			-1	-1	-1	-1	-1	voits	-1	- 1	- 1	-	Pass	-1	Pass
Class_Time_Tpdc=	11.7	11.7	11.7	11.7	11.7	11.7	11.7	11.7	msec	11.7	11.7	11.7		Pass	75	Pass
Event_Count=	1	1	1	1	1	1	1	-1	****	1	1	1	0		2	Pass
Event1_Tcle1= Event2_Tcle2=	-1		-1		-1	-1	-1	-1	msec msec	-1	-1	-1	-1	Pass Pass	-1	Pass Pass
Mark_Tme1=	-1	-1	-1	-1	-1	-1	-1	-1	msec	-1	-1	-1	-1	Pass	-1	Pass
Hark_Tme2=	-1	-1	-1	-1	-1	-1	-1	-1	msec	-1	-1	-1	-1	Pass	-1	Pass
Test: pwrup_time Pwr-On_Rise_Time_Trise=	49	50	49	59	49	47	49	49	usec	47	59	50.125	15	Pass	50000	Pass
Power-On_Time_Tpon=	11.7		11.7	7.8	15.6	11.7	11.7	11.7	msec	7.8	15.6			Pass	400	
Test: pwrup_inrush	415.1	418.1	100.0	400.0	425.4	423.6	426.9	429.6		415.1	429.6	422.475	(00		512	
Init_Iinrush= Max Iinrush=	415.1	418.1	420.3	420.8 420.6	425.4	423.6	426.9	429.6	mA mA	415.1	429.6	422.476 421.9		Pacc Pass	450	Paco Pass
Min_Iinrush=	413.6	416.8	419.1	419.8	424.4	422.1	425.4	428.4	mA	413.6	428.4	421.2	400	Pass	450	Pass
Tlim_Inrush=	59.2				57.6	57.6	60.4	57.2	msec	57.2		58.95		Pass	75	
Inrush_Voltage= Powered Vport-	34.7 49.9	34.5	34.8	34.8 49.6	35.1 49.0	34.9 49.7	35.1 49.9	35.1 49.6	Volts Volts	34.5 49.6	35.1 49.9	34.875		Pass Pass	57 57	Pass Pass
Test: pwrup_v																
DC_Voltage_Vport=	49.8 22		49.7	49.5 25	49.7	49.7	49.8 22	49.6 21	volts	49.5	49.8	49.6625		Pass Pass	57 500	Pass Pass
AC_Ripple_Vpp(low) = Test: pwrup noise	22	23	23	25	1	23	22	21	mVolts	1	20	20	0	Pass	500	Pass
AC_Ripple_Vpp(noise)=	5	8	2	6	1	5	7	8	m∀olts	1	8	5.25	0	Pass	200	Pass
Test: pwrup_pwr	2.5	2.5	2.5	2.5	2.5	2.5	0.5	2.5		0.5	25				2.9	
DC_Power_Pport= DC_Current_Iport=	2.5				2.5	2.5	2.5 50	2.5	watts mA	2.5		2.5		Pass Pass	2.9	Pass Pass
Test: pwrup_pwrcap																
Pport_Capacity=	17.6		16.8	17.6	17.6	17.6	17.6	17.6	watts	16.8	17.6	17.4			22.7	Pass
Iport_Capacity= Port Class=	359		343	361	360	360	359	361	mA ****	343	361	355.875 C	270.2		399	Pass Pass
Test: pwrup_maxi																
Init_Ilim=	416		421 420	421 421	426 425	424 423	427	430 429	mA mA	416	430 429	422.875 421.875	400	Pass Pass	512 450	Pass Pass
Max_Current_Limit_Ilim= Min_Current_Limit_Ilim=	414		420	421	425	423	426	429	mA mA	414	429	421.075			450	Pass
Short_Cir_Timeout_Tlim=	65.8	59.6	60.4	57.6	59.6	59.2	60.4	56.8	msec	56.8	65.8	59.925	50	Pass	75	Pass
Output_Voltage_V= 25 msec Short Vport=	34.7 50	34.5 49.7	34.8 49.9	34.7 49.8	35.1 49.9	34.9 49.9	35.1 50	35 49.8	Volts Volts	34.5	35.1 50	34.85 49.875	44	Info Pass	57	Pass Pass
Test: pwrup overld	50	45.7	45.5	45.0	45.5	45.5	50	45.0	VOILS	45.7	00	45.070		Fass	57	Fabb
Vport_Hin=	48.864		48.768	48.592	48.736	48.656	48.816	48.656	volts	48.528	48.864	48.702			57	Pass
Negative_Slew=	0.05		0.05	0.04	0.05	0.04	0.04	0.05	V/uSec	0.04	0.05	0.045			3.5 3.5	Pass Pass
Positive_Slew= Power_Duration=	3040		3040		3040	3040	3040	3040	V/usec uSec	3040	3040	3040		Pass Pass	3.5	Pass Pass
Integr_Power_Out=	60.35				60.27	60.27	60.19	60.16	mW-Sec	60.07	60.35	60.21		Pass	69.3	
Test: mps dc valid	9	7	10	8	9	9	10	8	mA	7	10	8.75	F	Pass	10	Pass
Minimum_Valid_Imin2= Min Valid Time Tmps=	10			10	10	10	10	10	mA	10	10	10		Pass	65	Pass Pass
Test: mps_dc_pwrdn																
Hax Invalid Imin1=	7		9		8 352	7	9 350	7	mA msec	6 350	9	7.5		Pass Pass	9.5 400	
Time-to-Shutdown_Tmpdo= Max_Voltage_Vopen_max=	19.536		19.488		19.888	19.904	19.936	19.856	msec volts	19.376		352.875		Pass	400	
Test: pwrdn_overld																
Class 0 Ovid Current_Icut=	365		360	365 69 A	365	370	365	370	mA	360	370 60.5	365		Pass	400	
Overld_Time_Limit_Tovld= Test: pwrdn_time	59.6	60.5	59.3	59.4	58.3	57.6	58.4	57	mSec	57	60.5	58.7625	50	Pass	75	Pass
Turn-Off_Time_Toff=	62.4		60.8		55.7	63.1	59.2	54.1	mSec	54.1	63.1	59.3	0	Pass	500	Pass
Output_Cap_Cout=	0.08028		0.07773		0.07015	0.08115	0.07555	0.06768	uF	0.06768	0.08115	0.07548	-1	Pass	0.52	Pass
Output_Load_Rp- Test: pwrdn v	9999	9999	9999	9999	9999	9999	9999	9999	Kohm	9999	9999	9999	45	Pass	50000	Pass
Avg_Idle_Voff=	0.1				0	0.1	0.1	0.1	VDC	0		0.075			2.8	
Error Delay Ted=	9492.2	9453.1	9257.8		9375	9335.9 0.4	9296.9 0.4	9453.1	msec	9257.8	9492.2	9394.525 1.2625		Pass Pass	10000	Pass
Peak_Error_Delay_Ved=	0.4	0.4	7.3	0.4	0.4	0.4	0.4	0.4	VDC	0.4	7.3	1.2625	0	- ass	20.5	Pass
L																n

Technical Data: PSA-3048

Operating Mode	Signal Path	Parameter	Specification	
		Connections	RJ45	
		Data Rates and Signaling	10/100/1000BaseT	
		Latency	0 (Passively Coupled)	
		Impedance	100Ω, Balanced	
Data Through Mode	PSE-# to OUT-#	Pair-Pair Isolation	≥ 36dB @ 100MHz	
		Insertion Loss	≤ 2dB, 0.1MHz to 100 MHz	
		Insertion Loss Variation	≤ 0.75dB, 0.1MHz to 100 MHz	
		Return Loss (OUT pairs terminated into 100Ω)	\leq -24dB, 1MHz to 100MHz	
		Connection	RJ45	
		Data Rate and Signaling	10BaseT	
Data Connect (LLDP	PSE-# to Blade Transceiver	Orientation	MDI End Point	
Emulation) Mode	FSE-# to blade Transceiver	Protocol	802.1ab, 802.3bc, 802.3at	
		Impedance	100Ω, Balanced	
		Return Loss	≤-20dB, 1MHz to 100MHz	

PoE Port Connections				
Operating Mode	Dependency	Parameter	Selections	
2-Pair Power	Port 1 and Port 2 operate independently	Powered Pair	ALT-A or ALT-B	
2-Pair Power		Polarity	MDI or MDI-X	
4-Pair Power	Connect to Port 2 (Port 1	Powered Pair	ALT-A and ALT-B	
	bypassed)	Polarity	MDI or MDI-X for each pair	

Detection and AC	Detection and AC MPS Specifications				
Description	Conditions	Parameter	Specification		
		Range	9 KΩ to 39 KΩ		
Detection Resistance	Vport = 2.5VDC - 12VDC, Port Connected,	Resolution	1 ΚΩ		
Delection Resistance	Transition Current Load = 0	Accuracy	≤ 24KΩ, <u>+</u> 250Ω		
		$\Delta V / \Delta I$ at 1 Volt Spacings	> 24KΩ, <u>+</u> 400Ω		
	Vport = 2.5VDC - 12VDC, Port Connected,	Range	0.14, 5, 7, 11µF		
Detection Capacitance		Accuracy	15%		
	Transition Current Load = 0				
Detection Signature Cut- Off Threshold	Port Connected	Vport	12V <u>+</u> 2%		
		AC Impedance	24KΩ (0.1μF + 330Ω)		
AC MPS Signature	Vport = 12VDC - 60VDC, Port Connected	Resistance Accuracy	22.8KΩ, <u>+</u> 250Ω		
	Fort Connected	Δ V / Δ I at 2 Volt Spacings			
	Port Isolated	AC Impedance (< 500 Hz)	<u>≥</u> 1.1 MΩ		
	FUILISUIALEU	AC Impedance (< 120 Hz)	<u>></u> 3.0 MΩ		

Current Load Specifications				
Description	Conditions	Parameter	Specification	
		Range	0 to 750 mA	
		Resolution	0.25 mA	
		Accuracy $\pm 0.5\% \pm 0.25$ mA		
Load Current	Per Powered Pair	Slew Rates > 4mA / µsec	> 4mA / μsec	
		Activation Voltage	15V, Rising Vport	
		De-Activation Voltage	14V, Falling Vport	

Current Load Sp	ecifications		
		Range	0 to 400 mA
		Resolution	0.25 mA
Transition Current	Load Current Active,	Accuracy	<u>+</u> 0.5% <u>+</u> 0.25mA
	Per Powered Pair	Slew Rates	> 4mA / µsec
		Activation Voltage	14V, Falling Vport
		De-Activation Voltage	6V, Falling Vport
		Load Step 1 Range	0 to 2000 mA
		Load Step 2 Range	0 to 750 mA
		Resolution (0 – 1023 mA)	0.25 mA
		Resolution > 1023 mA	0.50 mA
		Accuracy	<u>+</u> 1% <u>+</u> 0.5mA
		Slew Rates	> 4mA / µsec
		Steps	2
Configurable Load	Vport > 15VDC	Load Step 1 Duration < 1024 mA	200 µsec to 1 sec
Transient		Load Step 1 Duration > 1023 mA	200 µsec to 80 msec
		Load Step 2 Duration	20 µsec to 1 sec (or persist)
		Step Resolution	100 μs
		Saturated Load Eff. Resistance	37 Ω
		Foldback Suppression Minimum Port Voltage (@ 400mA PSE Current Limiting)	33 VDC
		Foldback Suppression Duration	Step 1 + Step 2 Duration

Description	Conditions	Parameter	Specification
		Voltage Range	0 - 60V
	Average	Trace Length	256 Samples
Voltage Meter Max-F Min-P	Average, Max-Peak,	Sample Rates	39.1 µsec – 39.1 msec (10msec 10sec traces)
	Min-Peak,	Resolution	0.025 V
	Scope Trace	Accuracy ¹	<u>+</u> 0.5% <u>+</u> 15.6 mV
		Measurement Triggers	Immediate, Edge, Event
		Current Range	0 – 2000 mA
		Trace Length	256 Samples
	Average,	Sample Rates	39.1 µsec – 39.1 msec
Current Mator	Max-Peak,		(10 msec 10sec traces)
Current Meter	Min-Peak,	Resolution (0 – 1023 mA)	0.25mA
	Scope Trace	Resolution (1024 - 2000 mA)	0.5mA
		Accuracy ²	<u>+</u> 0.5% <u>+</u> 0.5mA
		Triggers	Immediate, Edge, Event

Does not include Voltage drop due to cable losses and 0.45Ω maximum test port input resistance.
 Does not include Port-Connected MPS current, which is approximately (Vport - 12V)/24kΩ.

AC Metering Specifications				
Description	Conditions	Parameter	Specification	
	Low Band	3dB Bandwidth	16Hz – 500Hz	
	High Band	3dB Bandwidth	1500Hz – 300kHz	
AC Deals Deals Mater	Full Band	3dB Bandwidth	16Hz – 300kHz	
AC Peak-Peak Meter		Resolution	1mV	
	All Bands	Accuracy	2% <u>+</u> 8mV	
		Range	1Vp-p	

Triggering Specifications				
Description	Conditions	Parameter	Specification	
		Range	0.25V - 59.5V	
		Resolution	0.125 mV	
	All Modes	Accuracy (relative to DC Meter)	<u>+</u> 0.0625 mV	
		Trig1 to Meter or Transient Latency	~ 50 µsecs	
Edge & Event Triggers		Event Trigger Latency	< 500 µsecs	
Luge a Lvent mggers	Trigger Noise Immunity	Pre-Trigger Qualification Time	1.5 msec	
		(Voltage below Rising threshold or above Falling threshold)		
		Normal Mode Edge Noise Rejection	125 mV	
		Noisy Mode Edge Noise Rejection	500 mV	

Time Interval Meter	ing Specifications		
Description	Conditions	Parameter	Specification
		Time Range	4 – 26200 μs
	Microsecond scale	Time Resolution	1 usec
	MICIOSECUTIO SCALE	Time Accuracy	<u>+</u> 2 μsecs
		Min. Resolvable Time Interval	~ 4 μsecs
	Millisecond scale	Time Range	2-6550 ms
		Time Resolution	0.1 msec
		Time Accuracy	<u>+</u> 1 msec
Time Interval Meter		Min. Resolvable Time Interval	2 msec
	Second Scale	Time Range	0.1 – 16.1 sec
		Time Resolution	0.1 sec
		Time Accuracy	<u>+</u> 0.05 sec
		Min. Resolvable Time Interval	0.1 sec
		Start Trigger	Edge or Event
	Triggering & Noise	Stop Trigger	Edge
	Immunity	Normal Mode Edge Noise Rejection	125 mV
		Noisy Mode Edge Noise Rejection	500 mV

LED Indicators		
LED Label	Parameter	Description
DET	Detection Enabled	 ON: Valid Detection Signature Connected (R= 19 to 26 KΩ, C= 0μF) AND Port Switch Connected BLINKING: Receiving or Transmitting a Layer 2 LLDP message. OFF: Port Switch Open OR Invalid PD Signature
PWR	PSE Power On	 ON: Indicates Power-Up with Vport > 36 VDC (Regardless of Trigger State) OFF: Vport < 36 VDC
ARM	Trigger ARM	ON: Trigger 1 in the ARMED State OFF: Trigger 1 NOT in the ARMED State
AUX	Communications	ON or BLINKING: Indicates Communications to PSA Test Port

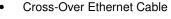
Programming and Control	
Description	Specification
Interface	Ethernet 10/100BaseT
Host Requirements	PC running Microsoft Windows NT, 2000, XP, Vista, or Linux PC (Fedora, SUSE)
Control Environment	Sifos PowerShell or PSA-Interactive
Recommended Network Latency:	< 5 msec

Physical and Environmental	
Description	Specification
Dimensions	19"W x 11.5"H x 12"L (7U Rack Mount)
Weight	41 lbs.
Power	100VAC-240VAC, 50-60 Hz, 2A Max.
Ambient Operating Temperature	0 ℃ to 50 ℃ (≤ 42.75 Watt loading per port)
Storage Temperature	-20°C to 85°C
Operating Humidity	5% to 95% RH, Non-Condensing.

Certifications	
Description	Certifications
Emissions	FCC Part 15, Class A
	Meets EN55022
	VCCI, AS/NZS 3548
Safety	CSA Listed (CSA22.2 No. 61010)
	Meets EN61010-1
	CB Scheme IEC 61010-1
European Commission	Low Voltage Directive (73/23/EEC)
	Electromagnetic Compatibility Directive (89/336/EEC)
	CE Marking Directive (93/68/EEC)

FCC Statement:

This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. Operation of this equipment in a residential area is likely to cause harmful interference in which case the user will be required to correct the interference at their own expense.


Ordering Information

PSA-3048, PowerSync Analyzer 3048 RackPack PSA with PowerShell PSA
PSA-3048-GUI, PSA Interactive Graphical User Interface Software for PSA-3048
PSA-CT, PSE Conformance Test Suite for One PSA Controller (Up to 24 Test Ports)
PSA-MPT, PSE Multi-Port Test Suite for One PSA Controller (Up to 24 Test Ports)
PSA-TS1, PSE Automated Test Suite Tracking Service for One Year for One PSA Controller
PSA-TS2, PSE Automated Test Suite Tracking Service for Two Years for One PSA Controller
PSA-3048U, PSA-2400 to PSA-3048 Chassis, Controller, and Test Card Upgrade
PSA-LLPD, LLDP Emulation and Analysis Feature for One PSA-3000 Controller (*future activation key availability*)

Accessories Included:

- Installation Guide & Configuration Chart
- PowerSync Analyzer Reference Manual (Binder and CD)
- Power Cord

Sifos Technologies, Inc. 1061 East Street Tewksbury, MA 01876 +1 (978) 640-4900 www.sifos.com sales@sifos.com

RS-232 Cable

real POWET from Sifes