
Astrée for C
Astrée is a static analyzer which signals all potential run-
time errors, data races and further critical program defects.
Astrée is sound, i.e., if no errors are signaled, this means
there are no errors from the class of errors under investi-
gation – the absence of errors has been proven. It reports
program defects caused by unspecified and undefined be-
haviors according to the C99 norm, program defects caused
by invalid concurrent behavior, and computes program
properties relevant for functional safety.

Key features

• Analysis and verification at the module level, applica-
tion level and whole-program level

• Safe and sound analysis results, based on a mathemat-
ically rigorous formal method

• Automatic OS-aware analysis for ARINC-653,
OSEK, and AUTOSAR applications

• Full tracability of reported code issues
• Interactive result exploration
• Robust classification of findings
• Configurable report file generation
• Tracking and visualization of project progress and

analysis revisions
• Client/server architecture featuring queue processing

of analysis requests, and centralized user management
and authentication

• Stand-alone tool with open interfaces and open file
formats

• MATLAB integration and TargetLink coupling
• Automatic tool qualification according to safety stan-

dards
• Seamless RuleChecker integration:

– Fast and easy to use
– Enforcement of coding guidelines including

MISRA-C:2004, MISRA-C:2012, and cus-
tomized rule sets

– No false positives and no false negatives on syn-
tactical rules

– Leverages Astrée results to guarantee zero false
negatives and minimal false positives on seman-
tical rules

– Computation of code metrics: HIS metrics and
customized metrics

– Enforcement of metric thresholds
Error classes reported by Astrée include:

• integer/floating-point division by zero
• out-of-bounds array indexing
• erroneous pointer manipulation and dereferencing

(null, uninitialized, and dangling pointers)
• data races (read/write or write/write concurrent ac-

cesses by two threads to the same memory location
without proper mutex locking)

• inconsistent locking (lock/unlock problems)
• invalid calls to operating system services (e.g. OSEK-

calls to TerminateTask() on a task with unre-
leased resources)

• integer and floating-point arithmetic overflows
• read accesses to uninitialized variables
• code Astrée can prove to be unreachable under all

circumstances (note that this is not necessarily all
unreachable code

• violations of optional user-defined assertions to prove
additional runtime properties. These static assertions
can be formulated with arbitrary side-effect free C ex-
pressions. When Astrée does not report an assertion
failure alarm, the correctness of the asserted expres-
sion has been formally proven.

• violations of coding rules and code metric thresholds.
• non-terminating loops

Astrée is sound for floating-point computations and han-
dles them precisely and safely. It takes all potential round-
ing errors into account.
Astrée computes data and control flow reports containing
a detailed listing of accesses to global and static variables
sorted by functions or variables, and caller/callee relation-
ships between functions. The analyzer can also report each
potentially shared variable, the list of asynchronous tasks
accessing it, and the types of the accesses (read, write,
read/write). The call graph is visualized and can be inter-
actively explored.

Key benefits

Astrée considers all possible program executions with full
control and data coverage and can report every source
code expression and statement that may lead to a defect
from one the supported defect classes. It relies on abstract
interpretation – a provably correct formal method – and
does not require the program under analysis to be instru-
mented, executed, or stimulated by test cases. The
tool can be used on handwritten code, automatically gener-



Astrée for C
ated code, or by any combination thereof. Open interfaces
and full batch mode execution make Astrée ideally suited
to be used in continuous verification frameworks. Tool
couplings, e.g., to dSPACE TargetLink, are available that
provide a seamless integration in existing development
environments. By using its Qualification Support Kit and
AbsInt’s Qualification Software Life Cycle Data Reports,
Astrée can be automatically qualified according to all con-
temporary safety norms (e.g., ISO 26262 or DO-178B/C).
Astrée enable users to

• reduce the risk of failure in the field by finding all
potential run-time errors and data races,

• meet mandatory verification goals of contemporary
safety standards,

• improve software quality, and
• reduce time-to-market.

Supported standards

• ISO/IEC 9899:1999

System requirements

• Windows: 64-bit Windows 7 SP1 or newer
• Linux: 64-bit CentOS/RHEL 7 or compatible
• 4 GB of RAM (16 GB recommended)
• 4 GB of disk space

Also available

The following AbsInt products are also available for this
target:
• RuleChecker
• Qualification Support Kit
• Qualification Software Life Cycle Data Report

More information

• Visit our website: www.absint.com
• Speak with a product specialist:

call +49 681 383 600

About AbsInt

AbsInt provides advanced development tools for embedded
systems, and tools for analysis, optimization and verifica-
tion of safety-critical software. Our customers are located
in more than 40 countries worldwide. We have distribution
agreements with major software distributors in Asia, North
America, Middle East, and throughout Europe.

Our headquarters

Science Park 1
66123 Saarbrücken, Germany
Phone: +49 681 383 600
Fax: +49 681 383 60 20
Email: info@absint.com
Web: www.absint.com

https://www.absint.com
mailto:info@absint.com
https://www.absint.com

	Key features
	Key benefits
	Supported standards
	System requirements
	Also available
	More information
	About AbsInt
	Our headquarters


