
A product of SEGGER Microcontroller GmbH & Co. KG

emUSB Host

Software version 1.00
Document: UM10001

Revision: 0
Date: June 12, 2009

User Guide

CPU independent
USB Host stack for

embedded applications

www.segger.com

2

Disclaimer

Specifications written in this document are believed to be accurate, but are not guar-
anteed to be entirely free of error. The information in this manual is subject to
change for functional or performance improvements without notice. Please make sure
your manual is the latest edition. While the information herein is assumed to be
accurate, SEGGER Microcontroller GmbH & Co. KG (the manufacturer) assumes no
responsibility for any errors or omissions. The manufacturer makes and you receive
no warranties or conditions, express, implied, statutory or in any communication with
you. The manufacturer specifically disclaims any implied warranty of merchantability
or fitness for a particular purpose.

Copyright notice

You may not extract portions of this manual or modify the PDF file in any way without
the prior written permission of the manufacturer. The software described in this doc-
ument is furnished under a license and may only be used or copied in accordance
with the terms of such a license.

© 2009 SEGGER Microcontroller GmbH & Co. KG, Hilden / Germany

Trademarks

Names mentioned in this manual may be trademarks of their respective companies.

Brand and product names are trademarks or registered trademarks of their respec-
tive holders.

Contact address

SEGGER Microcontroller GmbH & Co. KG

In den Weiden 11
D-40721 Hilden

Germany

Tel.+49 2103-2878-0
Fax.+49 2103-2878-28
Email: support@segger.com
Internet: http://www.segger.com
UM10001 - emUSB Host User Guide © 2009 SEGGER Microcontroller GmbH & Co. KG

3

Manual versions

This manual describes the latest software version. If any error occurs, please inform
us and we will try to assist you as soon as possible.

For further information on topics or routines not yet specified, please contact us.

Software versions

Refers to Release.html for information about the changes of the software versions.

SW version /
Manual revision

Date By Explanation

1.00/00 090609 AS Initial version.
UM10001 - emUSB Host User Guide © 2009 SEGGER Microcontroller GmbH & Co. KG

4

UM10001 - emUSB Host User Guide © 2009 SEGGER Microcontroller GmbH & Co. KG

5

About this document
Assumptions

This document assumes that you already have a solid knowledge of the following:

� The software tools used for building your application (assembler, linker, C com-
piler)

� The C programming language
� The target processor
� DOS command line.

If you feel that your knowledge of C is not sufficient, we recommend The C Program-
ming Language by Kernighan and Richie (ISBN 0-13-1103628), which describes the
standard in C-programming and, in newer editions, also covers the ANSI C standard.

How to use this manual
This manual explains all the functions and macros that emUSB Host offers. It
assumes you have a working knowledge of the C language. Knowledge of assembly
programming is not required.

Typographic conventions for syntax

This manual uses the following typographic conventions:

Style Used for

Body Body text.

Keyword
Text that you enter at the command-prompt or that appears on
the display (that is system functions, file- or pathnames).

Parameter Parameters in API functions.

Sample Sample code in program examples.

Sample comment Comments in program examples.

Reference Reference to chapters, sections, tables and figures or other docu-
ments.

GUIElement Buttons, dialog boxes, menu names, menu commands.

Emphasis Very important sections

Table 1.1: Typographic conventions
UM10001 - emUSB Host User Guide © 2009 SEGGER Microcontroller GmbH & Co. KG

6

EMBEDDED SOFTWARE
(Middleware)

emWin
Graphics software and GUI
emWin is designed to provide an effi-
cient, processor- and display control-
ler-independent graphical user
interface (GUI) for any application that
operates with a graphical display.
Starterkits, eval- and trial-versions are
available.

embOS
Real Time Operating System
embOS is an RTOS designed to offer
the benefits of a complete multitasking
system for hard real time applications
with minimal resources. The profiling
PC tool embOSView is included.

emFile
File system
emFile is an embedded file system with
FAT12, FAT16 and FAT32 support.
emFile has been optimized for mini-
mum memory consumption in RAM and
ROM while maintaining high speed.
Various Device drivers, e.g. for NAND
and NOR flashes, SD/MMC and Com-
pactFlash cards, are available.

USB-Stack
USB device stack
A USB stack designed to work on any
embedded system with a USB client
controller. Bulk communication and
most standard device classes are sup-
ported.

SEGGER TOOLS

Flasher
Flash programmer
Flash Programming tool primarily for microcon-
trollers.

J-Link
JTAG emulator for ARM cores
USB driven JTAG interface for ARM cores.

J-Trace
JTAG emulator with trace
USB driven JTAG interface for ARM cores with
Trace memory. supporting the ARM ETM (Embed-
ded Trace Macrocell).

J-Link / J-Trace Related Software
Add-on software to be used with SEGGER�s indus-
try standard JTAG emulator, this includes flash
programming software and flash breakpoints.

SEGGER Microcontroller GmbH & Co. KG develops
and distributes software development tools and ANSI
C software components (middleware) for embedded
systems in several industries such as telecom, medi-
cal technology, consumer electronics, automotive
industry and industrial automation.

SEGGER�s intention is to cut software development-
time for embedded applications by offering compact flexible and easy to use middleware,
allowing developers to concentrate on their application.

Our most popular products are emWin, a universal graphic software package for embed-
ded applications, and embOS, a small yet efficient real-time kernel. emWin, written
entirely in ANSI C, can easily be used on any CPU and most any display. It is comple-
mented by the available PC tools: Bitmap Converter, Font Converter, Simulator and
Viewer. embOS supports most 8/16/32-bit CPUs. Its small memory footprint makes it
suitable for single-chip applications.

Apart from its main focus on software tools, SEGGER develops and produces programming
tools for flash microcontrollers, as well as J-Link, a JTAG emulator to assist in develop-
ment, debugging and production, which has rapidly become the industry standard for
debug access to ARM cores.

Corporate Office:
http://www.segger.com

United States Office:
http://www.segger-us.com
UM10001 - emUSB Host User Guide © 2009 SEGGER Microcontroller GmbH & Co. KG

7

Table of Contents
1 Introduction to emUSB Host ..9

1.1 What is emUSB Host ..10
1.2 Features...10
1.3 Basic concepts ..11
1.4 Further reading ...12
1.4.1 Related books ...12
1.5 Development environment (compiler)...13

2 Running emUSB Host on target hardware...15

2.1 Step 1: Open an embOS start project...17
2.2 Step 2: Adding emUSB Host to the start project ..18
2.3 Step 3: Build the project and test it ...19

3 Example applications ...21

3.1 Overview..22
3.1.1 emUSB Host HID (TBD FileName) ..23

4 USB Host Core Functions..25

4.1 Management Functions...26
4.2 API Functions..30
4.3 Data Structures...54
4.4 Function Types..77
4.5 Use of undocumented functions ...81

5 Mass Storage Device...83

5.1 Introduction..84
5.2 Overview..85
5.2.1 Features...85
5.2.2 Restrictions...85
5.3 Supported Protocols...86
5.4 USB Host MSD Core Functions...87
5.4.1 API Functions..87

6 Human Interface Device ..101

6.1 TBD ... 102

7 Configuring emUSB Host...103

7.1 Runtime configuration .. 104
7.1.1 Driver handling ... 104
7.2 Compile-time configuration ... 105
7.2.1 Compile-time configuration switches .. 105
7.2.2 Debug level .. 105

8 Debugging..107

8.1 Message output... 108
8.2 Testing stability... 109
8.3 API functions .. 110
8.4 Message types .. 118
UM10001 - emUSB Host User Guide © 2009 SEGGER Microcontroller GmbH & Co. KG

8

9 OS integration ..119

9.1 General information..120
9.2 OS layer API functions ..121
9.2.1 Examples ..121

10 Performance & resource usage ...123

10.1 Memory footprint ...124
10.1.1 ROM...124
10.1.2 RAM ...124
10.2 Performance..125

11 Related Documents ...127

12 Glossary...129
UM10001 - emUSB Host User Guide © 2009 SEGGER Microcontroller GmbH & Co. KG

9

Chapter 1

Introduction to emUSB Host
This chapter provides an introduction to using emUSB Host. It explains the basic con-
cepts behind emUSB Host.
UM10001 - emUSB Host User Guide © 2009 SEGGER Microcontroller GmbH & Co. KG

10 CHAPTER 1 Introduction to emUSB Host
1.1 What is emUSB Host
emUSB Host is a CPU-independent USB Host stack.

emUSB Host is a high-performance library that has been optimized for speed, versa-
tility and small memory footprint.

1.2 Features
emUSB Host is written in ANSI C and can be used on virtually any CPU.
Some features of emUSB Host:

� ISO/ANSI C source code
� High performance.
� Small footprint.
� No configuration required.
� Runs "out-of-the-box".
� Control, bulk and interrupt transfers
� Very simple host controller driver structure.
� USB Mass Storage Device Class available
� Works seamlessly with embOS and emFile (for MSD)
� Support for class drivers
� Support for external USB hub devices
� Support for devices with alternate settings
� Support for multi-interface devices
� Support for multi-configuration devices
� Royalty-free.
UM10001 - emUSB Host User Guide © 2009 SEGGER Microcontroller GmbH & Co. KG

11
1.3 Basic concepts
UM10001 - emUSB Host User Guide © 2009 SEGGER Microcontroller GmbH & Co. KG

12 CHAPTER 1 Introduction to emUSB Host
1.4 Further reading
This guide explains the usage of the emUSB Host protocol stack. It describes all func-
tions which are required to build a network application. For a deeper understanding
about how the USB protocols works use the following references.

1.4.1 Related books
TBD
UM10001 - emUSB Host User Guide © 2009 SEGGER Microcontroller GmbH & Co. KG

13
1.5 Development environment (compiler)
The CPU used is of no importance; only an ANSI-compliant C compiler complying with
at least one of the following international standard is required:

� ISO/IEC/ANSI 9899:1990 (C90) with support for C++ style comments (//)
� ISO/IEC 9899:1999 (C99)
� ISO/IEC 14882:1998 (C++)

If your compiler has some limitations, let us know and we will inform you if these will
be a problem when compiling the software. Any compiler for 16/32/64-bit CPUs or
DSPs that we know of can be used; most 8-bit compilers can be used as well.

A C++ compiler is not required, but can be used. The application program can there-
fore also be programmed in C++ if desired.
UM10001 - emUSB Host User Guide © 2009 SEGGER Microcontroller GmbH & Co. KG

14 CHAPTER 1 Introduction to emUSB Host
UM10001 - emUSB Host User Guide © 2009 SEGGER Microcontroller GmbH & Co. KG

15
Chapter 2

Running emUSB Host on target
hardware
This chapter explains how to integrate and run emUSB Host on your target hardware.
It explains this process step-by-step.
UM10001 - emUSB Host User Guide © 2009 SEGGER Microcontroller GmbH & Co. KG

16 CHAPTER 2 Running emUSB Host on target hardware
Integrating emUSB Host

The emUSB Host default configuration is preconfigured with valid values, which
matches the requirements of the most applications. emUSB Host is designed to be
used with embOS, SEGGER�s real-time operating system. We recommend to start
with an embOS sample project and include emUSB Host into this project.

We assume that you are familiar with the tools you have selected for your project
(compiler, project manager, linker, etc.). You should therefore be able to add files,
add directories to the include search path, and so on. In this document the IAR
Embedded Workbench® IDE is used for all examples and screenshots, but every
other ANSI C toolchain can also be used. It is also possible to use make files; in this
case, when we say �add to the project�, this translates into �add to the make file�.

Procedure to follow

Integration of emUSB Host is a relatively simple process, which consists of the fol-
lowing steps:

� Step 1: Open an embUSB Host project and compile it.
� Step 2: Add emUSB Host to the start project
� Step 3: Compile the project
UM10001 - emUSB Host User Guide © 2009 SEGGER Microcontroller GmbH & Co. KG

17
2.1 Step 1: Open an embOS start project
We recommend that you use one of the supplied embOS start projects for your target
system. Compile the project and run it on your target hardware.

TBD
UM10001 - emUSB Host User Guide © 2009 SEGGER Microcontroller GmbH & Co. KG

18 CHAPTER 2 Running emUSB Host on target hardware
2.2 Step 2: Adding emUSB Host to the start project
Add all source files in the following directory to your project:

• Config
• USBH

The Config folder includes all configuration files of emUSB Host. The configuration
files are preconfigured with valid values, which match the requirements of most
applications. Add the hardware configuration USBH_Config_<TargetName>.c supplied
with the driver shipment.

If your hardware is currently not supported, use the example configuration file and
the driver template to write your own driver. The example configuration file and the
driver template is located in the Sample\Driver\Template folder.

The Util folder is an optional component of the emUSB Host shipment. It contains
optimized MCU and/or compiler specific files, for example a special memcopy func-
tion.

Replace BSP.c and BSP.h of your embOS start project

Replace the BSP.c source file and the BSP.h header file used in your embOS start
project with the one which is supplied with the emUSB Host shipment. Some drivers
require a special functions which initializes the USB Host interface. This function is
called BSP_USBH_Init(). It is used to enable the ports which are connected to the
hardware. All interface driver packages include the BSP.c and BSP.h files irrespective
if the BSP_USBH_Init() function is implemented.

Configuring the include path

The include path is the path in which the compiler looks for include files. In cases
where the included files (typically header files, .h) do not reside in the same direc-
tory as the C file to compile, an include path needs to be set. In order to build the
project with all added files, you will need to add the following directories to your
include path:

• Config
• Inc
• USBH

Select the start application

For quick and easy testing of your emUSB Host integration, start with the code found
in the folder Application. Add one of the applications to your project.

TBD
UM10001 - emUSB Host User Guide © 2009 SEGGER Microcontroller GmbH & Co. KG

19
2.3 Step 3: Build the project and test it
Build the project. It should compile without errors and warnings. If you encounter
any problem during the build process, check your include path and your project con-
figuration settings. To test the project, download the output into your target and
start the application.
UM10001 - emUSB Host User Guide © 2009 SEGGER Microcontroller GmbH & Co. KG

20 CHAPTER 2 Running emUSB Host on target hardware
UM10001 - emUSB Host User Guide © 2009 SEGGER Microcontroller GmbH & Co. KG

21
Chapter 3

Example applications
In this chapter, you will find a description of each emUSB Host example application.
UM10001 - emUSB Host User Guide © 2009 SEGGER Microcontroller GmbH & Co. KG

22 CHAPTER 3 Example applications
3.1 Overview
Various example applications for emUSB Host are supplied. These can be used for
testing the correct installation and proper function of the device running emUSB
Host.

The following start application files are provided:

The example applications for the target-side are supplied in source code in the
Application directory.

File Description

Table 3.1: emUSB Host example applications
UM10001 - emUSB Host User Guide © 2009 SEGGER Microcontroller GmbH & Co. KG

23
3.1.1 emUSB Host HID (TBD FileName)
...
UM10001 - emUSB Host User Guide © 2009 SEGGER Microcontroller GmbH & Co. KG

24 CHAPTER 3 Example applications
UM10001 - emUSB Host User Guide © 2009 SEGGER Microcontroller GmbH & Co. KG

25
Chapter 4

USB Host Core Functions
In this chapter, you will find a description of all API functions as well as all required
data and function types.
UM10001 - emUSB Host User Guide © 2009 SEGGER Microcontroller GmbH & Co. KG

26 CHAPTER 4 USB Host Core Functions
4.1 Management Functions
The table below lists the available management functions.

Function Description

USBH_Init() Basically initializes the USB Host stack.
USBH_Exit() Is called on exit of the library.

USBH_EnumerateDevices()
Adds default endpoints for enumeration, sets the
host controller into running state and starts the
enumeration of the complete bus.

Table 4.1: emUSB Host management function overview
UM10001 - emUSB Host User Guide © 2009 SEGGER Microcontroller GmbH & Co. KG

27
4.1.1 USBH_Init()
Description

Basically initializes the USB Host stack.

Prototype
USBH_STATUS USBH_Init();

Additional information

Has to be called one time during startup before any other function. The library initial-
izes or allocates global resources within this function. The host controller must cre-
ated and added to the bus driver at an later time.
UM10001 - emUSB Host User Guide © 2009 SEGGER Microcontroller GmbH & Co. KG

28 CHAPTER 4 USB Host Core Functions
4.1.2 USBH_Exit()
Description

Is called on exit of the library

Prototype
void USBH_Exit();

Additional information

Has to be called on exit of the library. The library may free global resources within
this function. This includes also the removing and deleting of added host controllers.
After this function call, no other function of the library should be called.
UM10001 - emUSB Host User Guide © 2009 SEGGER Microcontroller GmbH & Co. KG

29
4.1.3 USBH_EnumerateDevices()
Description

Adds default endpoints for enumeration, sets the host controller into running state
and starts the enumeration of the complete bus.

Prototype
void USBH_EnumerateDevices(USBH_HC_BD_HANDLE * HcBdHandle);

Additional information

If this function returns the host controller runs and can detect USB devices.
UM10001 - emUSB Host User Guide © 2009 SEGGER Microcontroller GmbH & Co. KG

30 CHAPTER 4 USB Host Core Functions
4.2 API Functions
The table below lists the available API functions.

Function Description

USBH_CreateInterfaceList()
Generates a list of available
interfaces.

USBH_DestroyInterfaceList()
Deletes a previously generated
interface list.

USBH_GetInterfaceID()
Returns the interface ID for a
specified interface.

USBH_GetInterfaceInfo()
Obtains information about a
specified interface.

USBH_RegisterPnPNotification()
Registers a notification function
for PnP events.

USBH_UnregisterPnPNotification()
Unregisters a previously regis-
tered notification for PnP events.

USBH_RegisterEnumErrorNotification()
Registers a port error enumera-
tion notification.

USBH_UnregisterEnumErrorNotification()
Unregisters an registered port
error enumeration notification.

USBH_RestartEnumError()
The enumeration for all devices
that have failed the enumeration
is restarted.

USBH_OpenInterface() Opens the specified interface.

USBH_CloseInterface()
Closes a previously opened inter-
face.

USBH_GetDeviceDescriptor() Retrieves the device descriptor.

USBH_GetCurrentConfigurationDescriptor()
Retrieves the current configura-
tion descriptor.

USBH_GetInterfaceDescriptor()
Retrieves the interface descrip-
tor.

USBH_GetEndpointDescriptor() Retrieves a endpoint descriptor.
USBH_GetSerialNumber() Retrieves the serial number.

USBH_GetSpeed()
Retrieves the operation speed of
the device.

USBH_GetFrameNumber()
Retrieves the current frame num-
ber.

USBH_GetInterfaceIDByHandle()
Retrieves the current frame num-
ber.

USBH_SubmitUrb() Is used to submit an URB.

USBH_SetTraceMask()
Sets an internal trace mask
which filters trace messages pro-
duced by the USB bus driver.

USBH_GetStatusStr()
Return the status as an string
constants.

Table 4.2: emUSB Host API function overview
UM10001 - emUSB Host User Guide © 2009 SEGGER Microcontroller GmbH & Co. KG

31
4.2.1 USBH_CreateInterfaceList()
Description

Generates a list of available interfaces.

Prototype
USBH_INTERFACE_LIST_HANDLE USBH_CreateInterfaceList(
 USBH_INTERFACE_MASK * InterfaceMask,
 unsigned int * InterfaceCount);

Parameters

Additional information

The generated interface list is stored in the bus driver and must be deleted by a call
to USBH_DestroyInterfaceList. The list contains a snap shoot of interfaces avail-
able at the point of time where the function is called. This enables the application to
have a fixed relation between the index and a USB interface in a list. The list is not
updated if a device is removed or connected. A new list must be created to capture
the current available interfaces.

Parameter Description

InterfaceMask
Input parameter of type USBH_INTERFACE_MASK which speci-
fies a mask for the interfaces which should be listed.

InterfaceCount Returns the number of available interfaces.
Table 4.3: USBH_CreateInterfaceList() parameter list
UM10001 - emUSB Host User Guide © 2009 SEGGER Microcontroller GmbH & Co. KG

32 CHAPTER 4 USB Host Core Functions
4.2.2 USBH_DestroyInterfaceList()
Description

Deletes a previously generated interface list.

Prototype
void USBH_DestroyInterfaceList(
 USBH_INTERFACE_LIST_HANDLE InterfaceListHandle);

Parameter

Additional information

Deletes an interface list generated by a previous call to USBH_CreateInterfaceList.
If an interface list is not deleted the library has a memory leak.

Parameter Description

InterfaceListHandle
Contains the handle for the interface list. It must not be
NULL.

USBH_DestroyInterfaceList() parameter list
UM10001 - emUSB Host User Guide © 2009 SEGGER Microcontroller GmbH & Co. KG

33
4.2.3 USBH_GetInterfaceID()
Description

Returns the interface ID for a specified interface.

Prototype
USBH_INTERFACE_ID USBH_GetInterfaceID(
 USBH_INTERFACE_LIST_HANDLE InterfaceListHandle,
 unsigned int Index);

Parameters

Return value

On success the interface ID for the interface specified by Index is returned. If the
interface index does not exist the function returns 0.

Additional information

The interface ID identifies a USB interface as long as the device is connected to the
host. If the device is removed and re-connected a new interface ID is assigned. The
interface ID is even valid if the interface list is deleted. The function can return an
interface ID even if the device is removed between the call to the function
USBH_CreateInterfaceList and the call to this function. If this is the case, the func-
tion USBH_OpenInterface fails.

Parameter Description

InterfaceListHandle
Contains the handle for the interface list generated by a
call to USBH_CreateInterfaceList.

Index Specifies the zero based index for an interface in the list.
USBH_GetInterfaceID() parameter list
UM10001 - emUSB Host User Guide © 2009 SEGGER Microcontroller GmbH & Co. KG

34 CHAPTER 4 USB Host Core Functions
4.2.4 USBH_GetInterfaceInfo()
Description

Obtains information about a specified interface.

Prototype
USBH_STATUS USBH_GetInterfaceInfo(
 USBH_INTERFACE_ID InterfaceID,
 USBH_INTERFACE_INFO * InterfaceInfo);

Return value

Returns USBH_STATUS_SUCCESS or USBH_STATUS_DEVICE_REMOVED.

Additional information

Can be used to identify a USB interface without open it. More detailed information
can be requests after the USB interface is opened.
UM10001 - emUSB Host User Guide © 2009 SEGGER Microcontroller GmbH & Co. KG

35
4.2.5 USBH_RegisterPnPNotification()
Description

Registers a notification function for PnP events.

Prototype
USBH_NOTIFICATION_HANDLE USBH_RegisterPnPNotification(
 USBH_PNP_NOTIFICATION * PnPNotification);

Parameter

Return value

On success a valid handle is returned, or NULL on error.

Additional information

If a valid handle is returned, the function USBH_UnregisterPnPNotification must
be called to release the notification. An application can register any number of notifi-
cations. The user notification routine is called in the context of an notify timer that is
global for all USB bus PnP notifications. If this function is called while the bus driver
has already enumerated devices that match the USBH_INTERFACE_MASK the function
USBH_PnpNotification is called for each matching interface.

Parameter Description

PnPNotification
Contains a pointer to a caller provided structure
USBH_PNP_NOTIFICATION. This structure must be filled in by
the caller.

Table 4.4: USBH_RegisterPnPNotification() parameter list
UM10001 - emUSB Host User Guide © 2009 SEGGER Microcontroller GmbH & Co. KG

36 CHAPTER 4 USB Host Core Functions
4.2.6 USBH_UnregisterPnPNotification()
Description

Unregisters a previously registered notification for PnP events.

Prototype
void USBH_UnregisterPnPNotification(USBH_NOTIFICATION_HANDLE Handle);

Parameter

Additional information

Has to be called for a PnP notification that was successfully registered by a call to
USBH_RegisterPnPNotification.

Parameter Description

Handle
Contains the valid handle for a PnP notification previously regis-
tered by a call to USBH_RegisterPnPNotification.

Table 4.5: USBH_UnregisterPnPNotification() parameter list
UM10001 - emUSB Host User Guide © 2009 SEGGER Microcontroller GmbH & Co. KG

37
4.2.7 USBH_RegisterEnumErrorNotification()
Description

Registers a port error enumeration notification.

Prototype
USBH_ENUM_ERROR_HANDLE USBH_RegisterEnumErrorNotification(
 void * Context,
 USBH_EnumErrorNotification * EnumErrorCallback);

Parameters

Return value

On success a valid handle is returned, or NULL on error.

Additional information

If a valid handle is returned, the function USBH_RegisterEnumErrorNotification
must be called to release the notification. The EnumErrorCallback callback routine is
called in the context of the process where the interrupt status of a host controller is
processed. It is forbidden to wait in that context.

Parameter Description

Context
Is a user defined pointer that is passed unchanged to the
notification callback function
USBH_EnumErrorNotification.

EnumErrorCallback
Contains the notification function that is called from the
library if a port enumeration error occurs.

Table 4.6: USBH_RegisterEnumErrorNotification() parameter list
UM10001 - emUSB Host User Guide © 2009 SEGGER Microcontroller GmbH & Co. KG

38 CHAPTER 4 USB Host Core Functions
4.2.8 USBH_UnregisterEnumErrorNotification()
Description

Unregisters an registered port error enumeration notification.

Prototype
void USBH_UnregisterEnumErrorNotification(USBH_ENUM_ERROR_HANDLE Handle);

Parameter

Additional information

Has to be called for a port enumeration error notification that was successfully regis-
tered by a call to USBH_RegisterEnumErrorNotification.

Parameter Description

Handle
Contains the valid handle for the notification previously returned
from USBH_RegisterEnumErrorNotification.

Table 4.7: USBH_UnregisterEnumErrorNotification() parameter list
UM10001 - emUSB Host User Guide © 2009 SEGGER Microcontroller GmbH & Co. KG

39
4.2.9 USBH_RestartEnumError()
Description

The enumeration for all devices that have failed the enumeration is restarted.

Prototype
void USBH_RestartEnumError();

Additional information

The bus driver retries each enumeration again until the default retry count is
reached.
UM10001 - emUSB Host User Guide © 2009 SEGGER Microcontroller GmbH & Co. KG

40 CHAPTER 4 USB Host Core Functions
4.2.10 USBH_OpenInterface()
Description

Opens the specified interface.

Prototype
USBH_STATUS USBH_OpenInterface(
 USBH_INTERFACE_ID InterfaceID,
 U8 Exclusive,
 USBH_INTERFACE_HANDLE * InterfaceHandle);

Parameters

Return value

Returns success or an error. The function can fail if the device is or was removed or
the device is opened exclusive by a different application. The function returns with
error if the exclusive flag is true and a different application has an open handle to the
function.

Additional information

The handle returned by this function is used by all other function that perform a data
transfer. The returned handle must be closed with USBH_CloseInterface if it is no
longer required

Parameter Description

InterfaceID
Specifies the interface to open by its interface ID. The inter-
face ID can be obtained by USBH_PnpNotification or
USBH_GetInterfaceID.

Exclusive
Specifies if the interface should be opened exclusive or not. If
the value is unequal of zero the interface is opened exclusive.

InterfaceHandle Returns the handle for the opened interface on success.
Table 4.8: USBH_OpenInterface() parameter list
UM10001 - emUSB Host User Guide © 2009 SEGGER Microcontroller GmbH & Co. KG

41
4.2.11 USBH_CloseInterface()
Description

Closes the specified interface.

Prototype
void USBH_CloseInterface(USBH_INTERFACE_HANDLE Handle);

Parameter

Additional information

Each handle must be closed one time. The library access invalid memory if this func-
tion is called with an invalid handle.

Parameter Description

Handle
Contains the handle for an interface opened by a call to
USBH_OpenInterface. It must not be NULL.

Table 4.9: USBH_CloseInterface() parameter list
UM10001 - emUSB Host User Guide © 2009 SEGGER Microcontroller GmbH & Co. KG

42 CHAPTER 4 USB Host Core Functions
4.2.12 USBH_GetDeviceDescriptor()
Description

Retrieves the device descriptor.

Prototype
USBH_STATUS USBH_GetDeviceDescriptor(
 USBH_INTERFACE_HANDLE Handle,
 U8 * Descriptor,
 unsigned int Size,
 unsigned int * Count);

Parameters

Return value

Success or device removed.

Additional information

Returns a copy of the device descriptor and does not access the device. If the buffer
is smaller than the device descriptor the function returns the first part of it.

Parameter Description

Handle Specifies the interface by its interface handle.

Descriptor
Points to a caller provided buffer that retrieves the device
descriptor on success.

Size Specifies the size of the caller provided buffer.
Count Returns the length of the returned descriptor.

Table 4.10: USBH_GetDeviceDescriptor() parameter list
UM10001 - emUSB Host User Guide © 2009 SEGGER Microcontroller GmbH & Co. KG

43
4.2.13 USBH_GetCurrentConfigurationDescriptor()
Description

Retrieves the current configuration descriptor.

Prototype
USBH_STATUS USBH_GetCurrentConfigurationDescriptor(
 USBH_INTERFACE_HANDLE Handle,
 U8 * Descriptor,
 unsigned int Size,
 unsigned int * Count);

Parameters

Return value

Success or device removed.

Additional information

Returns a copy of the current configuration descriptor. The descriptor is a copy that
was stored during the device enumeration. The function returns the first part of the
descriptor if the buffer is smaller than the descriptor. This descriptor contains all
interface, endpoint, and possible class descriptors. The size is variable. The current
configuration descriptor is the descriptor return to the request with the index 0 if the
device was enumerated by the device the first time. It changes if the configuration is
switch with USBH_SET_CONFIGURATION. Other configuration descriptors of a multi-
configuration device can be requested with USBH_FUNCTION_CONTROL_REQUEST.

Parameter Description

Handle Specifies the interface by its interface handle.

Descriptor
Points to a caller provided buffer that retrieves the current con-
figuration descriptor on success.

Size Specifies the size of the caller provided buffer.
Count Returns the number of valid bytes.

Table 4.11: USBH_GetCurrentConfigurationDescriptor() parameter list
UM10001 - emUSB Host User Guide © 2009 SEGGER Microcontroller GmbH & Co. KG

44 CHAPTER 4 USB Host Core Functions
4.2.14 USBH_GetInterfaceDescriptor()
Description

Retrieves the interface descriptor.

Prototype
USBH_STATUS USBH_GetInterfaceDescriptor(
 USBH_INTERFACE_HANDLE Handle,
 U8 AlternateSetting,
 U8 * Descriptor,
 unsigned int Size,
 unsigned int * Count);

Parameters

Return value

Success, device removed, or invalid parameter.

Additional information

returns a copy of a interface descriptor. The interface descriptor belongs to the inter-
face that is identified by the USBH_INTERFACE_HANDLE. If the interface has different
alternate settings the interface descriptors of each alternate setting can be
requested. The function returns a copy of this descriptor that was requested during
the enumeration. The interface descriptor is a part of the configuration descriptor.

Parameter Description

Handle Specifies the interface by its interface handle.
AlternateSetting Specifies the alternate setting for this interface.

Descriptor
Points to a caller provided buffer that retrieves the interface
descriptor on success.

Size Specifies the size of the caller provided buffer.
Count Returns the number of valid bytes in the descriptor.

Table 4.12: USBH_GetInterfaceDescriptor() parameter list
UM10001 - emUSB Host User Guide © 2009 SEGGER Microcontroller GmbH & Co. KG

45
4.2.15 USBH_GetEndpointDescriptor()
Description

Retrieves a endpoint descriptor.

Prototype
USBH_STATUS USBH_GetEndpointDescriptor(
 USBH_INTERFACE_HANDLE Handle,
 U8 AlternateSetting,
 USBH_EP_MASK * Mask,
 U8 * Descriptor,
 unsigned int Size,
 unsigned int * Count);

Parameters

Return value

Fails if the endpoint cannot be found or if the device is removed.

Additional information

Returns a copy of the endpoint descriptor that was captured during the enumeration.
The endpoint descriptor is part of the configuration descriptor.

Parameter Description

Handle Specifies the interface by its interface handle.

AlternateSetting
Specifies the alternate setting for the interface. The func-
tion returns endpoint descriptors that are inside the speci-
fied alternate setting.

Mask
Is of type USBH_EP_MASK and specifies a mask to select
the endpoint.

Descriptor
Returns a pointer to a caller provided buffer that contains
the endpoint descriptor on success.

Size Specifies the size of the caller provided buffer.
Count Returns the valid number of bytes written to the buffer.

Table 4.13: USBH_GetEndpointDescriptor() parameter list
UM10001 - emUSB Host User Guide © 2009 SEGGER Microcontroller GmbH & Co. KG

46 CHAPTER 4 USB Host Core Functions
4.2.16 USBH_GetSerialNumber()
Description

Retrieves the serial number.

Prototype
USBH_STATUS USBH_GetSerialNumber(
 USBH_INTERFACE_HANDLE Handle,
 U8 * Descriptor,
 unsigned int Size,
 unsigned int * Count);

Parameters

Return value

Returns an error if the device is removed.

Additional information

Returns the serial number as a UNICODE string in USB little endian format. Count
returns the number of valid bytes. The string is not zero terminated. The returned
data does not contain a USB descriptor header. The descriptor is requested with the
first language ID. This string is a copy of the serial number string that was requested
during the enumeration. To request other string descriptors use USBH_SubmitUrb. If
the device does not support a USB serial number string the function returns success
and a length of 0.

Parameter Description

Handle Specifies the interface by its interface handle.

Descriptor
Is a pointer to a caller provided buffer. It returns the serial num-
ber on success.

Size Specifies the size of the caller provided buffer in bytes.
Count Returns the number of bytes written to the buffer.

Table 4.14: USBH_GetSerialNumber() parameter list
UM10001 - emUSB Host User Guide © 2009 SEGGER Microcontroller GmbH & Co. KG

47
4.2.17 USBH_GetSpeed()
Description

Retrieves the operation speed of the device.

Prototype
USBH_STATUS USBH_GetSpeed(
 USBH_INTERFACE_HANDLE Handle,
 USBH_SPEED * Speed);

Parameters

Return value

Returns an error if the device is removed.

Additional information

A high speed device can operate in full or high speed mode.

Parameter Description

Handle Specifies the interface by its interface handle.

Speed
Returns the operating speed of the device. It is of type
USBH_SPEED.

Table 4.15: USBH_GetSpeed() parameter list
UM10001 - emUSB Host User Guide © 2009 SEGGER Microcontroller GmbH & Co. KG

48 CHAPTER 4 USB Host Core Functions
4.2.18 USBH_GetFrameNumber()
Description

Retrieves the current frame number.

Prototype
USBH_STATUS USBH_GetFrameNumber(
 USBH_INTERFACE_HANDLE Handle,
 U32 * FrameNumber);

Parameters

Return value

Returns an error if the device is removed.

Additional information

The frame number is transferred on the bus with 11 bits. This frame number is
returned as a 16 or 32 bit number related to the implementation of the host control-
ler. The last 11 bits are equal to the current frame. The frame number is increased
each ms. This is the case for high speed, too. The returned frame number is related
to the bus where the device is connected. The frame numbers between different host
controllers can be different.

Parameter Description

Handle Specifies the interface by its interface handle.
FrameNumber Returns the current frame number on success.

Table 4.16: USBH_GetFrameNumber() parameter list
UM10001 - emUSB Host User Guide © 2009 SEGGER Microcontroller GmbH & Co. KG

49
4.2.19 USBH_GetInterfaceIDByHandle()
Description

Retrieves the interface ID for a given interface.

Prototype
USBH_STATUS USBH_GetInterfaceIDByHandle(
 USBH_INTERFACE_HANDLE Handle,
 USBH_INTERFACE_ID * InterfaceID);

Parameters

Return value

Returns an error if the device is removed.

Additional information

Returns the interface ID if the handle to the interface is available. This may be useful
if a Plug and Play notification is received and the application checks if it is related to
a given handle. The application can avoid calls to this function if the interface ID is
stored in the device context of the application.

Parameter Description

Handle Specifies the interface by its interface handle.
InterfaceID Returns the interface ID on success.

Table 4.17: USBH_GetInterfaceIDByHandle() parameter list
UM10001 - emUSB Host User Guide © 2009 SEGGER Microcontroller GmbH & Co. KG

50 CHAPTER 4 USB Host Core Functions
4.2.20 USBH_SubmitUrb()
Description

Is used to submit an URB.

Prototype
USBH_STATUS USBH_SubmitUrb(
 USBH_INTERFACE_HANDLE Handle,
 URB * Urb);

Parameters

Return value

The request can fail on different reasons. If the function returns
USBH_STATUS_PENDING the completion function is called later. In all other cases the
completion routine is not called. If the function returns success, the request was pro-
cessed immediately. On error the request cannot be processed.

Additional information

If the status USBH_STATUS_PENDING is returned the owner ship of the URB is passed
to the bus driver. The storage of the URB must not be freed nor modified as long as
the owner ship is at the bus driver. The bus driver passes the URB back to the appli-
cation by calling the completion routine. An URB that transfers data can be pending
for a long time.

Parameter Description

Handle Specifies the interface by its interface handle.

Urb

Input and output parameter. On input it contains the URB which
should be submitted. On output it contains the submitted URB
with the appropriate status and the received data if any. The
storage for the URB must be permanent as long as the request is
pending. The host controller can define special alignment
requirements for the URB or the data transfer buffer.

Table 4.18: USBH_SubmitUrb() parameter list
UM10001 - emUSB Host User Guide © 2009 SEGGER Microcontroller GmbH & Co. KG

51
4.2.21 USBH_SetTraceMask()
Description

Sets an internal trace mask which filters trace messages produced by the USB bus
driver

Prototype

void USBH_SetTraceMask(U32 Mask);

Parameter

Additional information

The trace mask is an internal global integer variable. A specific bit position within
that variable is assigned to every particular trace message built into the USB bus
library. The message will be outputted if the corresponding bit is set and will be sup-
pressed if the corresponding bit is cleared. This way, the current value of the trace
mask determines the amount of trace messages produced by the USB bus library.

Bit positions of trace mask are assigned as described below:

DBG_ERR
Fatal errors and ASSERTs. It is recommended to always set this bit.

DBG_WRN
Non-fatal errors. Warning messages. It is recommended to always set this bit.

DBG_INFO
Informational messages.

DBG_FUNC
Function names.

DBG_UPPER
Print functions names with parameters of the upper interface.

DBG_EP
Endpoint object and interface traces.

DBG_EP0
Control endpoint object traces.

DBG_HOST
Host object traces.

DBG_RHUB
RootHub object traces.

DBG_DRV
Driver object traces.

DBG_PNP
PNP notification traces.

DBG_DEV
Device object traces.

DBG_URBCT
Traces an URB counter for testing.

DBG_HUB
Hub object traces.

DBG_REFCT
Trace an internal reference counter.

Parameter Description

Mask Specifies the new trace mask to be set.
Table 4.19: USBH_SetTraceMask() parameter list
UM10001 - emUSB Host User Guide © 2009 SEGGER Microcontroller GmbH & Co. KG

52 CHAPTER 4 USB Host Core Functions
DBG_SUBSTATE
Trace an helper sub state machine.

DBG_HUBNOTIFY
Trace hub device status notifications.

DBG_ADDREMOVE
Display informations about adding and removing of USB devices.

By default, the bits DBG_ERR and DBG_WRN are set and all other bits are cleared in the
trace mask. Note that the DBG_xxx constants specify a bit position and not the cor-
responding mask. Use the DBG_BIT_MASK macro to create the corresponding mask for
an individual bit position.

Example:
USBH_SetTraceMask(DBG_BIT_MASK(DBG_ERR)|DBG_BIT_MASK(DBG_WRN));

In the debug version the trace support is enabled. If trace support is disabled then a
call to USBH_SetTraceMask has no effect.
UM10001 - emUSB Host User Guide © 2009 SEGGER Microcontroller GmbH & Co. KG

53
4.2.22 USBH_GetStatusStr()
Description

Return the status as an string constants.

Prototype
const char * USBH_GetStatusStr(USBH_STATUS x);

Parameter

Return value

An error string is returned.

Additional information

Returns only an error string if the debug version of the library is used (DBG=1).

Parameter Description

x Specifies the status.
Table 4.20: USBH_GetStatusStr() parameter list
UM10001 - emUSB Host User Guide © 2009 SEGGER Microcontroller GmbH & Co. KG

54 CHAPTER 4 USB Host Core Functions
4.3 Data Structures
The table below lists the available data structures.

Structure Description

USBH_INTERFACE_MASK
Input parameter to create an interface list or to regis-
ter a PnP notification.

USBH_INTERFACE_INFO
Contains information about a USB interface and the
related device.

USBH_ENUM_ERROR
Is used as an notification parameter for the
USBH_EnumErrorNotification function.

USBH_EP_MASK Input parameter to get an endpoint descriptor.
USBH_CONTROL_REQUEST Is used as a union member for the URB data structure.
USBH_BULK_INT_REQUEST Is used to transfer data from or to a bulk endpoint.
USBH_ISO_FRAME Is used to define ISO transfer buffers.
USBH_ISO_REQUEST Is used to transfer data to an ISO endpoint.
USBH_ENDPOINT_REQUEST Is used as a union member for the URB data structure.
USBH_SET_CONFIGURATION Is used as a union member for the URB data structure.
USBH_SET_INTERFACE Is used as a union member for the URB data structure.
USBH_SET_POWER_STATE Is used to set a power state.

URB
Basic structure for all asynchronous operations on the
bus driver.

USBH_PNP_NOTIFICATION
Is used as an input parameter for the
USBH_RegisterPnPNotification function.

USBH_HEADER Defines the header of an URB.
USBH_SPEED Is used to get the operation speed of a device.
USBH_PNP_EVENT Is used as a parameter for the PnP notification.

USBH_FUNCTION
Is used as a member for the USBH_HEADER data struc-
ture.

USBH_POWER_STATE Specifies some power states.
Table 4.21: emUSB Host data structure overview
UM10001 - emUSB Host User Guide © 2009 SEGGER Microcontroller GmbH & Co. KG

55
4.3.1 USBH_INTERFACE_MASK
Definition
typedef struct tag_USBH_INTERFACE_MASK {
 U16 Mask;
 U16 VID;
 U16 PID;
 U16 bcdDevice;
 U8 Interface;
 U8 Class;
 U8 SubClass;
 U8 Protocol;
} USBH_INTERFACE_MASK;

Description

Input parameter to create an interface list or to register a PnP notification.

Members

Member Description

Mask

Contains an or�ed selection of the following flags. If the flag is set
the related member of this structure is compared to the proper-
ties of the USB interface.

USBH_INFO_MASK_VID
Compare the vendor ID (VID) of the device.
USBH_INFO_MASK_PID
Compare the product ID (PID) of the device.
USBH_INFO_MASK_DEVICE
Compare the bcdDevice value of the device.
USBH_INFO_MASK_INTERFACE
Compare the interface number.
USBH_INFO_MASK_CLASS
Compare the class of the interface.
USBH_INFO_MASK_SUBCLASS
Compare the sub class of the interface.
USBH_INFO_MASK_PROTOCOL
Compare the protocol of the interface.

VID Contains a vendor ID.
PID Contains a product ID.
bcdDevice Contains a BCD coded device version.
Interface Contains the interface number.
Class Describes the class code stored in the interface.
Subclass Describes the sub class code stored in the interface.
Protocol Describes the protocol stored in the interface.

Table 4.22: USBH_INTERFACE_MASK() member list
UM10001 - emUSB Host User Guide © 2009 SEGGER Microcontroller GmbH & Co. KG

56 CHAPTER 4 USB Host Core Functions
4.3.2 USBH_INTERFACE_INFO
Definition
typedef struct tag_USBH_INTERFACE_INFO {
 USBH_INTERFACE_ID InterfaceID;
 USB_DEVICE_ID DeviceID;
 U16 VID;
 U16 PID;
 U16 bcdDevice;
 U8 Interface;
 U8 Class;
 U8 SubClass;
 U8 Protocol;
 unsigned int OpenCount;
 U8 ExclusiveUsed;
 USB_SPEED Speed;
 U8 SerialNumber[256];
 U8 SerialNumberSize;
} USBH_INTERFACE_INFO;

Description

Is used to get information about a device with the function USBH_GetInterfaceInfo.

Members

Member Description

InterfaceID

Contains the unique interface ID. This ID is assigned if the
USB device was successful enumerated. It is valid until the
device is removed for the host. If the device is reconnected
a different interface ID is assigned to each interface.

DeviceID

Contains the unique device ID. This ID is assigned if the
USB device was successful enumerated. It is valid until the
device is removed for the host. If the device is reconnected
a different device ID is assigned. The relation between the
device ID and the interface ID can be used by an application
to detect which USB interfaces belong to a device.

VID Contains the vendor ID.
PID Contains the product ID.
bcdDevice Contains the BCD coded device version.
Interface Contains the USB interface number.
Class Specifies the interface class.
Subclass Specifies the interface sub class.
Protocol Specifies the interface protocol.
OpenCount Specifies the number of open handles for this interface.
ExclusiveUsed Determines if this interface is used exclusive.
Speed Specifies the operation speed of this interface.
SerialNumber[256] Contains the serial number as a counted UNICODE string.
SerialNumberSize Contains the length of the serial number in bytes.

Table 4.23: USBH_INTERFACE_INFO() member list
UM10001 - emUSB Host User Guide © 2009 SEGGER Microcontroller GmbH & Co. KG

57
4.3.3 USBH_ENUM_ERROR
Definition
typedef struct tag_USBH_ENUM_ERROR {
 int Flags;
 int PortNumber;
 USBH_STATUS Status;
 int ExtendedErrorInformation;
} USBH_ENUM_ERROR;

Description

Is used as an notification parameter for the USBH_EnumErrorNotification function.
This data structure does not contain detailed information about the device that fails
the enumeration because this information is not available in all phases of the enu-
meration.

Members

Member Description

Flags

Additional flags to determine the location and the
type of the error.

USBH_ENUM_ERROR_EXTHUBPORT_FLAG
means the device is connected to an external
hub.
USBH_ENUM_ERROR_RETRY_FLAG
the bus driver retries the enumeration of
this device automatically.
USBH_ENUM_ERROR_STOP_ENUM_FLAG
the bus driver does not restart the enumera-
tion for this device because all retries has
failed. The application can force the bus
driver to restart the enumeration by calling
the function USBH_RestartEnumError.
USBH_ENUM_ERROR_DISCONNECT_FLAG
means the device has been disconnected dur-
ing the enumeration. If the hub port reports
a disconnect state the device cannot be re-
enumerated by the bus driver automatically.
Also the function USBH_RestartEnumError can-
not re-enumerate the device.
USBH_ENUM_ERROR_ROOT_PORT_RESET
means an error during the USB reset of a
root hub port occurs.
USBH_ENUM_ERROR_HUB_PORT_RESET
means an error during a reset of an external
hub port occurs.
UDB_ENUM_ERROR_INIT_DEVICE
means an error during the device initializa-
tion (e.g. no answer to a descriptor request
or it failed other standard requests.
UDB_ENUM_ERROR_INIT_HUB
means the enumeration of an external hub
fails.

Table 4.24: USBH_ENUM_ERROR() member list
UM10001 - emUSB Host User Guide © 2009 SEGGER Microcontroller GmbH & Co. KG

58 CHAPTER 4 USB Host Core Functions
PortNumber
Port number of the parent port where the USB
device is connected. A flag in the PortFlags field
determine if this is an external hub port.

Status Status of the failed operation.
ExtendedErrorInformation Internal information used for debugging.

Member Description

Table 4.24: USBH_ENUM_ERROR() member list
UM10001 - emUSB Host User Guide © 2009 SEGGER Microcontroller GmbH & Co. KG

59
4.3.4 USBH_EP_MASK
Definition
typedef struct tag_USBH_EP_MASK {
 U32 Mask;
 U8 Index;
 U8 Address;
 U8 Type;
 U8 Direction;
} USBH_EP_MASK;

Description

Is used as an input parameter to get an endpoint descriptor. The comparison with the
mask is true if each member that is marked as valid by a flag in the mask member is
equal to the value stored in the endpoint. E.g. if the mask is 0 the first endpoint is
returned. If the Mask is set to USBH_EP_MASK_INDEX the zero based index can be
used to address all endpoints.

Members

Member Description

Mask

This member contains the information which fields are valid. It is a
or�ed combination of the following flags:

USBH_EP_MASK_INDEX
The Index is used for comparison.
USBH_EP_MASK_ADDRESS
The Address field is used for comparison.
USBH_EP_MASK_TYPE
The Type field is used for comparison.
USBH_EP_MASK_DIRECTION
The Direction field is used for comparison.

Index
If valid, this member contains the zero based index of the endpoint in
the interface.

Address If valid, this member contains an endpoint address with direction bit.

Type

If valid, this member specifies a direction. It is one of the following
values:
USB_IN_DIRECTION
USB_OUT_DIRECTION

Table 4.25: USBH_EP_MASK() member list
UM10001 - emUSB Host User Guide © 2009 SEGGER Microcontroller GmbH & Co. KG

60 CHAPTER 4 USB Host Core Functions
4.3.5 USBH_CONTROL_REQUEST
Definition
typedef struct tag_USBH_CONTROL_REQUEST {
 SETUP_PACKET Setup;
 U8 Endpoint;
 void * Buffer;
 U32 Length;
} USBH_CONTROL_REQUEST;

Description

Is used to submit a control request. A control request consists of a setup phase, an
optional data phase, and a handshake phase. The data phase is limited to a length of
4096 bytes. The Setup data structure must be filled in properly. The length field in
the Setup must contain the size of the Buffer. The caller must provide the storage for
the Buffer.

With this request each setup packet can be submitted. Some standard requests, like
SetAddress can be send but would destroy the multiplexing of the bus driver. It is not
allowed to set the following standard requests:

SetAddress
It is assigned by the bus driver during enumeration or USB reset.

Clear Feature Endpoint Halt
Use USBH_FUNCTION_RESET_ENDPOINT instead. The function
USBH_FUNCTION_RESET_ENDPOINT resets the data toggle bit in the host controller
structures.

SetConfiguration
Use USBH_SET_CONFIGURATION instead. The bus driver must take care on the inter-
faces and endpoints of a configuration. The function USBH_SET_CONFIGURATION
updates the internal structures of the driver.

Members

Member Description

Setup Specifies the setup packet.

Endpoint
Specifies the endpoint address with direction bit. Use 0 for
default endpoint.

Buffer

Pointer to a caller provided buffer, can be NULL. This buffer is
used in the data phase to transfer the data. The direction of the
data transfer depends from the Type field in the Setup. See the
USB specification for details.

Length Returns the number of bytes transferred in the data phase.
Table 4.26: USBH_CONTROL_REQUEST() member list
UM10001 - emUSB Host User Guide © 2009 SEGGER Microcontroller GmbH & Co. KG

61
4.3.6 USBH_BULK_INT_REQUEST
Definition
typedef struct tag_USBH_BULK_INT_REQUEST {
 U8 Endpoint;
 void * Buffer;
 U32 Length;
} USBH_BULK_INT_REQUEST;

Description

The buffer size can be larger than the FIFO size but a host controller implementation
can define a maximum size for a buffer that can be handled with one URB. To get a
good performance the application should use two or more buffers.

Members

Member Description

Endpoint Specifies the endpoint address with direction bit.
Buffer Pointer to a caller provided buffer.

Length
Contains the size of the buffer and returns the number of bytes
transferred.

Table 4.27: USBH_BULK_INT_REQUEST() member list
UM10001 - emUSB Host User Guide © 2009 SEGGER Microcontroller GmbH & Co. KG

62 CHAPTER 4 USB Host Core Functions
4.3.7 USBH_ISO_FRAME
Definition
typedef struct tag_USBH_ISO_FRAME {
 U32 Offset;
 U32 Length;
 USBH_STATUS Status;
} USBH_ISO_FRAME;

Description

Is part of USBH_ISO_REQUEST. It describes the amount of data that is transferred in
one frame.

Members

Member Description

Offset
Specifies the offset in bytes relative to the beginning of the
transfer buffer.

Length Contains the length that should be transferred in one frame.

Status
Contains the status of the operation in this frame. For an OUT
endpoint this status is always success. For an IN point a CRC or
Data Toggle error can be reported.

Table 4.28: USBH_ISO_FRAME() member list
UM10001 - emUSB Host User Guide © 2009 SEGGER Microcontroller GmbH & Co. KG

63
4.3.8 USBH_ISO_REQUEST
Definition
typedef struct tag_USBH_ISO_REQUEST{
 U8 Endpoint;
 void * Buffer;
 U32 Length;
 unsigned int Flags;
 unsigned int StartFrame;
 unsigned int Frames;
} USBH_ISO_REQUEST;

Description

Is incomplete defined. That means the data structure consists of this data structure
and an array of data structures USBH_ISO_FRAME. The size of the array is defined by
Frames. Use the macro USBH_GET_ISO_URB_SIZE to get the size for an ISO URB.

Members

Member Description

Endpoint Specifies the endpoint address with direction bit.
Buffer Is a pointer to a caller provided buffer.

Length
On input this member specifies the size of the user provided
buffer. On output it contains the number of bytes transferred.

Flags

This parameter contains 0 or the following flag:

USBH_ISO_ASAP
If this flag is set the transfer starts as soon as pos-
sible and the parameter StartFrame is ignored.

StartFrame

If the flag USBH_ISO_ASAP is not set this parameter StartFrame
defines the start frame of the transfer. The StartFrame must be in
the future. Use USBH_GetFrameNumber to get the current frame
number. Add a time to the current frame number.

Frames
Contains the number of frames that are described with this struc-
ture.

Table 4.29: USBH_ISO_REQUEST() member list
UM10001 - emUSB Host User Guide © 2009 SEGGER Microcontroller GmbH & Co. KG

64 CHAPTER 4 USB Host Core Functions
4.3.9 USBH_ENDPOINT_REQUEST
Definition
typedef struct tag_USBH_ENDPOINT_REQUEST {
 U8 Endpoint;
} USBH_ENDPOINT_REQUEST;

Description

Is used with the requests USBH_FUNCTION_RESET_ENDPOINT and
USBH_FUNCTION_ABORT_ENDPOINT.

Members

Member Description

Endpoint Specifies the endpoint address.
Table 4.30: USBH_ENDPOINT_REQUEST() member list
UM10001 - emUSB Host User Guide © 2009 SEGGER Microcontroller GmbH & Co. KG

65
4.3.10 USBH_SET_CONFIGURATION
Definition
typedef struct tag_USBH_SET_CONFIGURATION {
 U8 ConfigurationDescriptorIndex;
} USBH_SET_CONFIGURATION;

Description

is used with the request USBH_FUNCTION_SET_CONFIGURATION.

Members

Member Description

ConfigurationDescriptorIndex
Specifies the index in the configuration
description.

Table 4.31: USBH_SET_CONFIGURATION() member list
UM10001 - emUSB Host User Guide © 2009 SEGGER Microcontroller GmbH & Co. KG

66 CHAPTER 4 USB Host Core Functions
4.3.11 USBH_SET_INTERFACE
Definition
typedef struct tag_USBH_SET_INTERFACE {
 U8 AlternateSetting;
} USBH_SET_INTERFACE;

Description

is used with the request USBH_FUNCTION_SET_INTERFACE.

Members

Member Description

AlternateSetting Specifies the alternate setting.
Table 4.32: USBH_SET_INTERFACE() member list
UM10001 - emUSB Host User Guide © 2009 SEGGER Microcontroller GmbH & Co. KG

67
4.3.12 USBH_SET_POWER_STATE
Definition
typedef struct tag_USBH_SET_POWER_STATE {
 USBH_POWER_STATE PowerState;
} USBH_SET_POWER_STATE;

Description

If the device is switched to suspend, there must be no pending requests on the
device.

Members

Member Description

PowerState Specifies the power state
Table 4.33: USBH_SET_POWER_STATE() member list
UM10001 - emUSB Host User Guide © 2009 SEGGER Microcontroller GmbH & Co. KG

68 CHAPTER 4 USB Host Core Functions
4.3.13 URB
Definition
typedef struct tag_URB {
 USBH_HEADER Header;
 union Request;
} URB;

Description

The following table lists the possible information types and associated structures:

The URB is the basic structure for all asynchronous operations on the bus driver. All
requests that exchanges data with the device are using this data structure. The caller
has to provide the memory for this structure. The memory must be permanent until
the completion function is called. This data structure is used to submit an URB.

Members

Request Type Associated Structure

ControlRequest USBH_CONTROL_REQUEST

BulkIntRequest USBH_BULK_INT_REQUEST

IsoRequest USBH_ISO_REQUEST

EndpointRequest USBH_ENDPOINT_REQUEST

SetConfiguration USBH_SET_CONFIGURATION

SetInterface USBH_SET_INTERFACE

SetPowerState USBH_SET_POWER_STATE

Member Description

Header
Contains the URB header of type USBH_HEADER. The most impor-
tant parameters are the function code and the callback function.

Request
Is a union and contains information depending on the specific
request of the USBH_HEADER.

Table 4.34: URB() member list
UM10001 - emUSB Host User Guide © 2009 SEGGER Microcontroller GmbH & Co. KG

69
4.3.14 USBH_PNP_NOTIFICATION
Definition
typedef struct tag_USBH_PNP_NOTIFICATION {
 USBH_PnpNotification * PnpNotification;
 void * Context;
 USBH_INTERFACE_MASK InterfaceMask;
} USBH_PNP_NOTIFICATION;

Description

Is used as an input parameter for the USBH_RegisterPnPNotification function.

Members

Member Description

PnpNotification
Contains the notification function that is called from the
library if a PnP event occurs.

Context
Contains the notification context that is passed unchanged
to the notification function.

PowerState
Contains a mask for the interfaces for which the PnP notifi-
cation should be called.

Table 4.35: USBH_PNP_NOTIFICATION() member list
UM10001 - emUSB Host User Guide © 2009 SEGGER Microcontroller GmbH & Co. KG

70 CHAPTER 4 USB Host Core Functions
4.3.15 USBH_HEADER
Definition
typedef struct tag_USBH_HEADER {
 USBH_FUNCTION Function;
 USBH_STATUS Status;
 USBH_ON_COMPLETION_FUNC * Completion;
 void * Context;
 DLIST ListEntry;
} USBH_HEADER;

Description

All not described members of this structure are for internal use only. Do not use
these members. A caller must fill in the members Function, Completion, and if
required Context.

Members

Member Description

Function Describes the function of the request.
Status After completion this member contains the status for the request.

Completion

Caller provided pointer to the completion function. This comple-
tion function is called if the function USBH_SubmitUrb returns
USBH_STATUS_PENDING. If a different status code is returned the
completion function is never called.

Context
Can be used by the caller to store a context for the completion
routine. It is not changed by the library.

ListEntry
Can be used to keep the URB in a list. The owner of the URB can
use this list entry. If the URB is passed to the library this member
is used by the library.

Table 4.36: USBH_HEADER() member list
UM10001 - emUSB Host User Guide © 2009 SEGGER Microcontroller GmbH & Co. KG

71
4.3.16 USBH_SPEED
Definition
typedef enum tag_USBH_SPEED {
 USBH_SPEED_UNKNOWN,
 USBH_LOW_SPEED,
 USBH_FULL_SPEED,
 USBH_HIGH_SPEED
} USBH_SPEED;

Description

Is used as a member in the USBH_INTERFACE_INFO data structure and to get the
operation speed of a device.

Members

Member Description

USBH_SPEED_UNKNOWN The speed is unknown.
USBH_LOW_SPEED The device operates at low speed.
USBH_FULL_SPEED The device operates at full speed.
USBH_HIGH_SPEED The device operates at high speed.

Table 4.37: USBH_SPEED() member list
UM10001 - emUSB Host User Guide © 2009 SEGGER Microcontroller GmbH & Co. KG

72 CHAPTER 4 USB Host Core Functions
4.3.17 USBH_PNP_EVENT
Definition
typedef enum tag_USBH_PNP_EVENT {
 USBH_AddDevice,
 USBH_RemoveDevice
} USBH_PNP_EVENT;

Description

Is used as a parameter for the PnP notification.

Members

Member Description

USBH_AddDevice
Indicates that a device was connected to the host and new
interface is available.

USBH_RemoveDevice Indicates that a device has been removed.
Table 4.38: USBH_PNP_EVENT() member list
UM10001 - emUSB Host User Guide © 2009 SEGGER Microcontroller GmbH & Co. KG

73
4.3.18 USBH_FUNCTION
Definition
typedef enum tag_USBH_FUNCTION {
 USBH_FUNCTION_CONTROL_REQUEST,
 USBH_FUNCTION_BULK_REQUEST,
 USBH_FUNCTION_INT_REQUEST,
 USBH_FUNCTION_ISO_REQUEST,
 USBH_FUNCTION_RESET_DEVICE,
 USBH_FUNCTION_RESET_ENDPOINT,
 USBH_FUNCTION_ABORT_ENDPOINT,
 USBH_FUNCTION_SET_CONFIGURATION,
 USBH_FUNCTION_SET_INTERFACE,
 USBH_FUNCTION_SET_POWER_STATE
} USBH_FUNCTION;

Description

Is used as a member for the USBH_HEADER data structure. All function codes use the
API function USBH_SubmitUrb and are handled asynchronously.

Entries

Entry Description

USBH_FUNCTION_CONTROL_REQUEST

Is used to send an URB with a control
request. It uses the data structure
USBH_CONTROL_REQUEST. A control request
includes standard, class and vendor defines
requests. The standard requests SetConfig-
uration, SetAddress and SetInterface can-
not be submitted by this request. These
requests require a special handling in the
driver. See
USBH_FUNCTION_SET_CONFIGURATION and
USBH_FUNCTION_SET_INTERFACE for details.

USBH_FUNCTION_BULK_REQUEST
Is used to transfer data to or from a bulk
endpoint. It uses the data structure
USBH_BULK_INT_REQUEST.

USBH_FUNCTION_INT_REQUEST

Is used to transfer data to or from an inter-
rupt endpoint. It uses the data structure
USBH_BULK_INT_REQUEST. The interval is
defined by the endpoint descriptor.

USBH_FUNCTION_ISO_REQUEST

Is used to transfer data to or from an ISO
endpoint. It uses the data structure
USBH_ISO_FRAME. ISO transfer may not be
supported by all host controllers.

Table 4.39: USBH_FUNCTION() member list
UM10001 - emUSB Host User Guide © 2009 SEGGER Microcontroller GmbH & Co. KG

74 CHAPTER 4 USB Host Core Functions
USBH_FUNCTION_RESET_DEVICE

Sends an USB reset to the device. This
causes a remove event for all interfaces of
the device. After the device is successfully
enumerated an arrival event is indicated. All
interfaces get new interface ID�s. This
request uses only the URB header. If the
driver indicates an device arrival event the
device is in a defined state because it is
reseted and enumerated by the bus driver.
This request can be part of an error recov-
ery or part of special class protocols like
DFU. The application should abort all pend-
ing requests and close all handles to this
device. All handles become invalid.

USBH_FUNCTION_RESET_ENDPOINT

Clears an error condition on a special end-
point. If a data transfer error occurs that
cannot be handled in hardware the bus
driver stops the endpoint and does not
allow further data transfers before the end-
point is reseted with this function. On a bulk
or interrupt endpoint the host driver sends
a Clear Feature Endpoint Halt request. This
informs the device about the hardware
error. The driver resets the data toggle bit
for this endpoint. This request expects that
no pending URBs are scheduled on this end-
point. Pending URBs must be aborted with
the URB based function
USBH_FUNCTION_ABORT_ENDPOINT. This func-
tion uses the data structure
USBH_ENDPOINT_REQUEST.

USBH_FUNCTION_ABORT_ENDPOINT

Aborts all pending requests on a endpoint.
The host controller calls the completion
function with a status code
USBH_STATUS_CANCELED. The completion of
the URBs may be delayed. The application
should wait until all pending requests has
been returned by the driver before the han-
dle is closed or
USBH_FUNCTION_RESET_ENDPOINT is called.

Entry Description

Table 4.39: USBH_FUNCTION() member list
UM10001 - emUSB Host User Guide © 2009 SEGGER Microcontroller GmbH & Co. KG

75
USBH_FUNCTION_SET_CONFIGURATION

The driver selects the configuration defined
by the configuration descriptor with the
index 0 during the enumeration. If the
application uses this configuration there is
no need to call this function. If the applica-
tion wants to activate a different configura-
tion this function must be called.

USBH_FUNCTION_SET_INTERFACE

Selects a new alternate setting for the
interface. There must be no pending
requests on any endpoint to this interface.
The interface handle does not becomes
invalid during this operation. The number of
endpoints may be changed. This request
uses the data structure
USBH_SET_INTERFACE.

USBH_FUNCTION_SET_POWER_STATE

Is used to set the power state for a device.
There must be no pending requests for this
device if the device is set to the suspend
state. The request uses the data structure
USBH_SET_POWER_STATE. After the enumera-
tion the device is in normal power state.

Entry Description

Table 4.39: USBH_FUNCTION() member list
UM10001 - emUSB Host User Guide © 2009 SEGGER Microcontroller GmbH & Co. KG

76 CHAPTER 4 USB Host Core Functions
4.3.19 USBH_POWER_STATE
Definition
typedef enum tag_USBH_POWER_STATE {
 USBH_NORMAL_POWER,
 USBH_SUSPEND
} USBH_POWER_STATE;

Description

Is used as a member in the USBH_SET_POWER_STATE data structure.

Members

Member Description

USBH_NORMAL_POWER The device is switched to normal operation.
USBH_SUSPEND The device is switched to USB Suspend mode.

Table 4.40: USBH_POWER_STATE() member list
UM10001 - emUSB Host User Guide © 2009 SEGGER Microcontroller GmbH & Co. KG

77
4.4 Function Types
The table below lists the available function types.

Structure Description

USBH_ON_PNP_EVENT_FUNC
Is called by the library if a PnP event occurs
and if a PnP notification was registered.

USBH_ON_ENUM_ERROR_FUNC
Contains information about a USB interface
and the related device.

USBH_ON_COMPLETION_FUNC
Is used as an notification parameter for the
USBH_EnumErrorNotification function.

Table 4.41: emUSB Host function type overview
UM10001 - emUSB Host User Guide © 2009 SEGGER Microcontroller GmbH & Co. KG

78 CHAPTER 4 USB Host Core Functions
4.4.1 USBH_ON_PNP_EVENT_FUNC
Definition
typedef void USBH_ON_PNP_EVENT_FUNC(
 void * Context,
 USBH_PNP_EVENT Event,
 USBH_INTERFACE_ID InterfaceID);

Description

Is called in the context of a TAL timer. In the context of this function all other API
function of the bus driver can be called. The removed or added interface can be iden-
tified by the interface ID. The client can use this information to find the related USB
Interface and close all handles if it was in use, to open it or to collect information
about the interface.

Parameters

Parameter Description

Context
Is the user defined pointer that was passed to
USBH_RegisterPnPNotification. The library does not modify
this parameter.

Event Specifies the PnP event.
InterfaceID Contains the interface ID of the removed or added interface.

Table 4.42: USBH_ON_PNP_EVENT_FUNC() parameter list
UM10001 - emUSB Host User Guide © 2009 SEGGER Microcontroller GmbH & Co. KG

79
4.4.2 USBH_ON_ENUM_ERROR_FUNC
Definition
typedef void USBH_ON_ENUM_ERROR_FUNC(
 void * Context,
 const USBH_ENUM_ERROR * EnumError);

Description

Is called in the context of a TAL timer or of a ProcessInterrupt function of a host con-
troller. Before this function is called it must be registered with
USBH_RegisterEnumErrorNotification. If an device is not successfully enumerated the
function USBH_RestartEnumError can be called to re-start a new enumeration in the
context of this function. This callback mechanism is part of the enhanced error recov-
ery. In an embedded system with internal components connected with USB a central
application may turn off the power supply for some device to force a reboot or to cre-
ate an alert.

Parameters

Parameter Description

Context
Is a user defined pointer that was passed to
USBH_RegisterEnumErrorNotification.

EnumError
Specifies the enumeration error. This pointer is temporary and
must not be access after the functions returns.

Table 4.43: USBH_ON_ENUM_ERROR_FUNC() parameter list
UM10001 - emUSB Host User Guide © 2009 SEGGER Microcontroller GmbH & Co. KG

80 CHAPTER 4 USB Host Core Functions
4.4.3 USBH_ON_COMPLETION_FUNC
Definition
typedef void USBH_ON_COMPLETION_FUNC (tag_URB * Urb);

Description

Is called in the context of a TAL timer or of a ProcessInterrupt function of a host con-
troller. Before this function is called it must be registered with
USBH_RegisterEnumErrorNotification. If an device is not successfully enumerated the
function USBH_RestartEnumError can be called to re-start a new enumeration in the
context of this function. This callback mechanism is part of the enhanced error recov-
ery. In an embedded system with internal components connected with USB a central
application may turn off the power supply for some device to force a reboot or to cre-
ate an alert.

Parameter

Parameter Description

Urb Contains the URB that was completed.
Table 4.44: USBH_ON_COMPLETION_FUNC() parameter list
UM10001 - emUSB Host User Guide © 2009 SEGGER Microcontroller GmbH & Co. KG

81
4.5 Use of undocumented functions
Functions, variables and data-types which not explained in this manual are consid-
ered internal. They are in no way required to use the software. Your application
should not use and rely on any of the internal elements, as only the documented API
functions are guaranteed to remain unchanged in future versions of the software.
UM10001 - emUSB Host User Guide © 2009 SEGGER Microcontroller GmbH & Co. KG

82 CHAPTER 4 USB Host Core Functions
UM10001 - emUSB Host User Guide © 2009 SEGGER Microcontroller GmbH & Co. KG

83
Chapter 5

Mass Storage Device
UM10001 - emUSB Host User Guide © 2009 SEGGER Microcontroller GmbH & Co. KG

84 CHAPTER 5 Mass Storage Device
5.1 Introduction
The USB Host MSD library is a generic firmware library for accessing USB Mass Stor-
age Devices. It implements the USB Mass Storage Device class protocols specified by
the USB Implementers Forum. It maps read/write requests issued by a file system
driver to protocol-specific SCSI-style commands. It also implements initialization,
discovery and error recovery. The library is designed to be easy to use and provides a
convenient programming interface.

This document describes the architecture, the features and the programming inter-
face of the code. Furthermore, it includes instructions for including the library in a
firmware project.

Throughout this document the software layer that directly attaches to USB Host
library is called "main program", regardless of whether it is the main loop of a simple
firmware or a task of an operating system.

The reader of this document is assumed to be familiar with the specification of the
Universal Serial Bus Version 1.1 and 2.0 as well as common aspects of C program-
ming.
UM10001 - emUSB Host User Guide © 2009 SEGGER Microcontroller GmbH & Co. KG

85
5.2 Overview
The USB Host library handles all necessary commands and protocols to access a USB
Mass Storage device. It provides an easy to use interface for integrating the library in
an application. For more information refer also to section 3.

5.2.1 Features
The following features are provided:

� The command block specification and protocol implementation used by the con-
nected device will be automatically detected.

� It is independent from the file system. Support for a file system depends on the
used file system library.

5.2.2 Restrictions
The following restrictions relate to the USB Host library:

� The library supports only USB flash drives. Therefore not all protocol commands
are implemented.
UM10001 - emUSB Host User Guide © 2009 SEGGER Microcontroller GmbH & Co. KG

86 CHAPTER 5 Mass Storage Device
5.3 Supported Protocols
The following table contains an overview about the implemented command protocols.

The following table contains an overview about the implemented transport protocols.

Command block
specification Implementation Related documents

SCSI transparent com-
mand set

All necessary com-
mands for access-
ing flash devices.

Mass Storage Class Specification
Overview Revision 1.2., SCSI-2
Specification September 1993
Rev.10 (X3T9.2 Project 275D)

SFF-8070i
All necessary com-
mands for access-
ing flash devices.

SFF-8070i Specification for ATAPI
Removable Rewritable Media
Devices (SFF Committee:document
SFF-8070 Rev 1.3)

Protocol
implementation Implementation Related documents

Bulk-Only transport All commands
implemented.

Universal Serial Bus Mass Storage
Class Bulk-Only Transport Rev.1.0.
UM10001 - emUSB Host User Guide © 2009 SEGGER Microcontroller GmbH & Co. KG

87
5.4 USB Host MSD Core Functions

5.4.1 API Functions
This chapter describes the USB Host MSD API functions. These functions are defined
in the header file "USBH.h".

Function Description

USBH_MSD_Init() Initializes the USBH MSD library.
USBH_MSD_AddDevice() Adds a USB device to the library.
USBH_MSD_RemoveDevice() Removes a USB device from the library.
USBH_MSD_GetLuns() Returns an array of logical unit numbers (LUN�s).
USBH_MSD_ReadSectors() Reads sectors from a USB Mass Storage device.
USBH_MSD_WriteSectors() Writes sectors to a USB Mass Storage device.

USBH_MSD_GetUnitInfo()
Returns basic information about the logical unit
(LUN).

USBH_MSD_GetStatus() Checks the state of a device unit.
Table 5.1: emUSB Host MSD API function overview
UM10001 - emUSB Host User Guide © 2009 SEGGER Microcontroller GmbH & Co. KG

88 CHAPTER 5 Mass Storage Device
5.4.1.1 USBH_MSD_Init()
Description

Initializes the USBH MSD library.

Prototype
void USBH_MSD_Init();

Additional information

Performs basic initialization of the library. Has to be called before any other library
function is called. It can be called again to reinitialize the library. In this case all
internal states like added devices or handles are lost.
UM10001 - emUSB Host User Guide © 2009 SEGGER Microcontroller GmbH & Co. KG

89
5.4.1.2 USBH_MSD_AddDevice()
Description

Adds a USB device to the library.

Prototype
int USBH_MSD_AddDevice();

Return Value

If successful the function returns a value >= 0 describing the zero based device
index. It returns a value < 0 to indicate an error. Please note that the device index is
different from the logical unit index which is returned by the function
USBH_MSD_GetLuns. The device index is only required for the functions
USBH_MSD_GetLuns and USBH_MSD_RemoveDevice.

Additional information

The function USBH_MSD_Init has to be called before with success.
USBH_MSD_AddDevice has to be called before a device operation is performed. The
library checks the device for a valid transport method and protocol. If the library
does not support the protocol or the transport method of this device an appropriate
error code is returned. The library accepts only interfaces that have a particular sub
class code and protocol code. This function can be used to test unknown devices. Use
USBH_MSD_RemoveDevice to remove an unused device.
UM10001 - emUSB Host User Guide © 2009 SEGGER Microcontroller GmbH & Co. KG

90 CHAPTER 5 Mass Storage Device
5.4.1.3 USBH_MSD_RemoveDevice()
Description

Removes a USB device from the library.

Prototype
int USBH_MSD_RemoveDevice(int DevIndex);

Parameter

Return Value

If successful the function returns USBH_MSD_STATUS_SUCCESS. If parameter
DevIndex points to an invalid device USBH_MSD_STATUS_ERROR is returned.

Additional information

USBH_MSD_RemoveDevice should only be called if no operation is pending because
the library will not send special requests to the device to reset it.

Parameter Description

DevIndex
The device index returned by the function
USBH_MSD_AddDevice.

Table 5.2: USBH_MSD_RemoveDevice() parameter list
UM10001 - emUSB Host User Guide © 2009 SEGGER Microcontroller GmbH & Co. KG

91
5.4.1.4 USBH_MSD_GetLuns()
Description

Returns an array of logical unit numbers (LUN�s).

Prototype
int USBH_MSD_GetLuns(
 int DevIndex,
 U8 LunArray[],
 unsigned int LunArraySize);

Parameters

Return Value

If successful the function returns a value >= 0 describing the number of valid LUN�s
in the array. It returns a value < 0 to indicate an error.

Additional information

USBH_MSD_AddDevice must be called before with success.
The function returns an array of valid LUN indexes. For each LUN an instance of the
file system can be started. The LUN index is a required parameter for the functions
USBH_MSD_ReadSectors, USBH_MSD_WriteSectors, USBH_MSD_GetUnitInfo and
USBH_MSD_GetStatus.

Parameter Description

DevIndex
The device index returned by the function
USBH_MSD_AddDevice.

LunArray[]
A pointer to a caller provided storage. The storage is handled as
an array of U8, where each value represents the index of a LUN.
These LUN indexes are required for accessing the file system.

LunArraySize Contains the size of the LunArray.
Table 5.3: USBH_MSD_GetLuns() parameter list
UM10001 - emUSB Host User Guide © 2009 SEGGER Microcontroller GmbH & Co. KG

92 CHAPTER 5 Mass Storage Device
5.4.1.5 USBH_MSD_ReadSectors()
Description

Reads sectors from a USB Mass Storage device.

Prototype
void USBH_MSD_ReadSectors(
 U8 Lun,
 U32 SectorAddress,
 U32 NumSectors,
 U8 * Buffer);

Parameters

Return Value

Returns USBH_MSD_STATUS_SUCCESS if the sectors have been successfully read
from the device and copied to the Buffer. If reading from the specified device fails the
function returns USBH_MSD_STATUS_READ to indicate the error.

Additional information

A valid LUN has to be requested by a call to USBH_MSD_GetLuns before you are able
to successfully call USBH_MSD_ReadSectors.

Parameter Description

Lun Logical unit number returned by a call to USBH_MSD_GetLuns.
SectorAddress Describes the first sector to read.
NumSectors Determines the number of sectors to read.

Buffer
Pointer to a byte buffer. The caller is responsible for the storage
of the buffer.

Table 5.4: USBH_MSD_ReadSectors() parameter list
UM10001 - emUSB Host User Guide © 2009 SEGGER Microcontroller GmbH & Co. KG

93
5.4.1.6 USBH_MSD_WriteSectors()
Description

Writes sectors to a USB Mass Storage device.

Prototype
void USBH_MSD_WriteSectors(
 U8 Lun,
 U32 SectorAddress,
 U32 NumSectors,
 U8 * Buffer);

Parameters

Return Value

Returns USBH_MSD_STATUS_SUCCESS if the sectors have been successfully copied
from the Buffer and written to the device. If writing to the specified device fails the
function returns USBH_MSD_STATUS_WRITE to indicate the error. The function
returns USBH_MSD_STATUS_WRITE_PROTECT if the medium is write protected.

Additional information

Can be called after a valid LUN was requested by a call to USBH_MSD_GetLuns.

Parameter Description

Lun Logical unit number returned from USBH_MSD_GetLuns.
SectorAddress Describes the first sector to write.
NumSectors Determines the number of sectors to write.
Buffer Pointer to a buffer containing the data to be written.

Table 5.5: USBH_MSD_WriteSectors() parameter list
UM10001 - emUSB Host User Guide © 2009 SEGGER Microcontroller GmbH & Co. KG

94 CHAPTER 5 Mass Storage Device
5.4.1.7 USBH_MSD_GetUnitInfo()
Description

Returns basic information about the logical unit (LUN).

Prototype
int USBH_MSD_GetUnitInfo(
 U8 Lun,
 USBH_MSD_UNIT_INFO * Info);

Parameters

Return Value

Returns USBH_MSD_STATUS_SUCCESS in case of success. If the device is not a USB
Mass Storage device, USBH_MSD_STATUS_ERROR will be returned.
USBH_MSD_STATUS_TIMEOUT is returned if the function call timed out.

Additional information

Can be called after a valid LUN was requested by a call to USBH_MSD_GetLuns.

Parameter Description

Lun Logical unit number returned from USBH_MSD_GetLuns.

Info
Pointer to a caller provided storage buffer. It will contain the
information about the LUN in case of success.

Table 5.6: USBH_MSD_GetUnitInfo() parameter list
UM10001 - emUSB Host User Guide © 2009 SEGGER Microcontroller GmbH & Co. KG

95
5.4.1.8 USBH_MSD_GetStatus()
Description

Checks the state of a device unit.

Prototype

int USBH_MSD_GetStatus(U8 Lun);

Parameter

Return Value

If the device is working, USBH_MSD_STATUS_SUCCESS is returned. If the device
does not work correctly or is disconnected the function returns
USBH_MSD_STATUS_ERROR.

Additional information

Can be called after a valid LUN was requested by a call to USBH_MSD_GetLuns.

Parameter Description

Lun Logical unit number returned from USBH_MSD_GetLuns.
Table 5.7: USBH_MSD_GetStatus() parameter list
UM10001 - emUSB Host User Guide © 2009 SEGGER Microcontroller GmbH & Co. KG

96 CHAPTER 5 Mass Storage Device
5.4.2 Data Structures
This chapter describes the used structures defined in the header file "USBH.h".

Structure Description

USBH_MSD_UNIT_INFO Contains logical unit information.
Table 5.8: emUSB Host MSD structure overview
UM10001 - emUSB Host User Guide © 2009 SEGGER Microcontroller GmbH & Co. KG

97
5.4.2.1 USBH_MSD_UNIT_INFO
Definition
typedef struct tag_USB_MSD_UNIT_INFO {
 U32 TotalSectors;
 U16 BytesPerSector;
} USBH_MSD_UNIT_INFO;

Description

Contains logical unit information.

Parameters

Parameter Description

TotalSectors Contains the number of total sectors available on the LUN.
BytesPerSector Contains the number of bytes per sector.

Table 5.9: USBH_MSD_UNIT_INFO() parameter list
UM10001 - emUSB Host User Guide © 2009 SEGGER Microcontroller GmbH & Co. KG

98 CHAPTER 5 Mass Storage Device
5.4.3 Error Codes
This chapter describes the error codes which are defined in the header file "USBH.h".

Error Code Description

USBH_MSD_STATUS_SUCCESS (0)
USBH_MSD_STATUS_ERROR (-1)
USBH_MSD_STATUS_PARAMETER (-2)
USBH_MSD_STATUS_LENGTH (-3)
USBH_MSD_STATUS_TIMEOUT (-4)
USBH_MSD_STATUS_COMMAND_FAILED (-5)
USBH_MSD_STATUS_INTERFACE_PROTOCOL (-6)
USBH_MSD_STATUS_INTERFACE_SUB_CLASS (-7)
USBH_MSD_STATUS_PIPE_STALLED (-9)
USBH_MSD_STATUS_TRANSMISSION (-10)
USBH_MSD_STATUS_SENSE_STOP (-11)
USBH_MSD_STATUS_SENSE_REPEAT (-12)
USBH_MSD_STATUS_WRITE_PROTECT (-13)

Table 5.10: emUSB Host MSD error code overview
UM10001 - emUSB Host User Guide © 2009 SEGGER Microcontroller GmbH & Co. KG

99
5.4.3.1 USBH_MSD_STATUS_SUCCESS
Description

The operation has been successfully completed.

5.4.3.2 USBH_MSD_STATUS_ERROR
Description

The operation has been completed with an error.

5.4.3.3 USBH_MSD_STATUS_PARAMETER
Description

A parameter is incorrect.

5.4.3.4 USBH_MSD_STATUS_LENGTH
Description

The operation detected a length error.

5.4.3.5 USBH_MSD_STATUS_TIMEOUT
Description

The timeout of the operation has expired. This error code is used in all layers.

5.4.3.6 USBH_MSD_STATUS_COMMAND_FAILED
Description

This error is reported if the command code was sent successfully but the status
returned from the device indicates a command error.

5.4.3.7 USBH_MSD_STATUS_INTERFACE_PROTOCOL
Description

The used interface protocol is not supported. The interface protocol is defined by the
interface descriptor.

5.4.3.8 USBH_MSD_STATUS_INTERFACE_SUB_CLASS
Description

The used interface sub class is not supported. The interface sub class is defined by
the interface descriptor.

5.4.3.9 USBH_MSD_STATUS_PIPE_STALLED
Description

A pipe is stalled. This error is reported from the USB driver layer.

5.4.3.10 USBH_MSD_STATUS_TRANSMISSION
Description

A USB bus error occurred. This may be caused by a CRC error, a toggle error or
another USB bus error. This error is reported from the USB driver layer.
UM10001 - emUSB Host User Guide © 2009 SEGGER Microcontroller GmbH & Co. KG

100 CHAPTER 5 Mass Storage Device
5.4.3.11 USBH_MSD_STATUS_SENSE_STOP
Description

This error indicates that the device has not accepted the command. The execution
result of the command is stored in the sense element of the unit. The library will not
repeat the command.

5.4.3.12 USBH_MSD_STATUS_SENSE_REPEAT
Description

This error indicates that the device has not accepted the command. The execution
result of the command is stored in the sense element of the unit. The library repeats
the command after detection of the sense code.

5.4.3.13 USBH_MSD_STATUS_WRITE_PROTECT
Description

This error indicates that the medium is write protected. It will be returned by
USBH_MSD_WriteSectors if writing to the medium is not allowed.
UM10001 - emUSB Host User Guide © 2009 SEGGER Microcontroller GmbH & Co. KG

101
Chapter 6

Human Interface Device
UM10001 - emUSB Host User Guide © 2009 SEGGER Microcontroller GmbH & Co. KG

102 CHAPTER 6 Human Interface Device
6.1 TBD
UM10001 - emUSB Host User Guide © 2009 SEGGER Microcontroller GmbH & Co. KG

103
Chapter 7

Configuring emUSB Host
emUSB Host can be used without changing any of the compile-time flags. All com-
pile-time configuration flags are preconfigured with valid values, which match the
requirements of most applications. Network interface drivers can be added at runt-
ime.

The default configuration of emUSB Host can be changed via compile-time flags
which can be added to USBH_Conf.h. USBH_Conf.h is the main configuration file for
the emUSB Host stack.
UM10001 - emUSB Host User Guide © 2009 SEGGER Microcontroller GmbH & Co. KG

104 CHAPTER 7 Configuring emUSB Host
7.1 Runtime configuration
Every driver folder includes a configuration file with implementations of runtime con-
figuration functions explained in this chapter. These functions can be customized.

7.1.1 Driver handling
USBH_X_Config() is called at initialization of the USB Host stack. It is called by the
USB Host stack during USBH_Init(). USBH_X_Config() should help to bundle the
process of adding and configuring the driver.

7.1.1.1 USBH_X_Config()
Description

Helper function to prepare and configure the USB Host stack.

Prototype
void USBH_X_Config(void);

Additional information

This function is called by the startup code of the USB Host stack from USBH_Init().
UM10001 - emUSB Host User Guide © 2009 SEGGER Microcontroller GmbH & Co. KG

105
7.2 Compile-time configuration
The following types of configuration macros exist:

Binary switches "B"

Switches can have a value of either 0 or 1, for deactivated and activated respectively.
Actually, anything other than 0 works, but 1 makes it easier to read a configuration
file. These switches can enable or disable a certain functionality or behavior.
Switches are the simplest form of configuration macros.

Numerical values "N"

Numerical values are used somewhere in the code in place of a numerical constant. A
typical example is the configuration of the sector size of a storage medium.

Function replacements "F"

Macros can basically be treated like regular functions although certain limitations
apply, as a macro is still put into the code as simple text replacement. Function
replacements are mainly used to add specific functionality to a module which is
highly hardware-dependent. This type of macro is always declared using brackets
(and optional parameters).

7.2.1 Compile-time configuration switches

7.2.2 Debug level
emUSB Host can be configured to display debug information at higher debug levels to
locate a problem (Error) or potential problem. To display information, emUSB Host
uses the logging routines. These routines can be blank, they are not required for the

Type Symbolic name Default Description

Debug macros

N USBH_DEBUG 0 Macro to define the debug level of
the emUSB Host build.

Optimization macros

F USBH_MEMCPY

memcpy
(C-routine in
standard C-
library)

Macro to define an optimized
memcpy routine to speed up the
stack. An optimized memcpy rou-
tine is typically implemented in
assembly language.
Optimized version for the IAR
compiler is supplied.

F USBH_MEMSET

memset
(C-routine in
standard C-
library)

Macro to define an optimized
memset routine to speed up the
stack. An optimized memset rou-
tine is typically implemented in
assembly language.

F USBH_MEMMOVE

memmove
(C-routine in
standard C-
library)

Macro to define an optimized
memmove routine to speed up the
stack. An optimized memmove
routine is typically implemented in
assembly language.

F USBH_MEMCMP

memcmp
(C-routine in
standard C-
library)

Macro to define an optimized
memcmp routine to speed up the
stack. An optimized memcmp rou-
tine is typically implemented in
assembly language.
UM10001 - emUSB Host User Guide © 2009 SEGGER Microcontroller GmbH & Co. KG

106 CHAPTER 7 Configuring emUSB Host
functionality of emUSB Host. In a target system, they are typically not required in a
release (production) build, since a production build typically uses a lower debug
level.

If (USBH_DEBUG == 0):
used for release builds. Includes no debug options.

If (USBH_DEBUG == 1):
USBH_PANIC() is mapped to USBH_Panic().

If (USBH_DEBUG >= 2):
USBH_PANIC() is mapped to USBH_Panic() and logging support is activated.
UM10001 - emUSB Host User Guide © 2009 SEGGER Microcontroller GmbH & Co. KG

107
Chapter 8

Debugging
emUSB Host comes with various debugging options. These includes optional warning
and log outputs, as well as other run-time options which perform checks at run time
as well as options to drop incoming or outgoing packets to test stability of the imple-
mentation on the target system.
UM10001 - emUSB Host User Guide © 2009 SEGGER Microcontroller GmbH & Co. KG

108 CHAPTER 8 Debugging
8.1 Message output
The debug builds of emUSB Host include a fine grained debug system which helps to
analyze the correct implementation of the stack in your application. All modules of
the USB Host stack can output logging and warning messages via terminal I/O, if the
specific message type identifier is added to the log and/or warn filter mask. This
approach provides the opportunity to get and interpret only the logging and warning
messages which are relevant for the part of the stack that you want to debug.

By default, all warning messages are activated in all emUSB Host sample configura-
tion files. All logging messages are disabled except for the messages from the initial-
ization phase.
UM10001 - emUSB Host User Guide © 2009 SEGGER Microcontroller GmbH & Co. KG

109
8.2 Testing stability
TBD
UM10001 - emUSB Host User Guide © 2009 SEGGER Microcontroller GmbH & Co. KG

110 CHAPTER 8 Debugging
8.3 API functions

Function Description

Filter functions

USBH_SetLogFilter()
Sets the mask that defines which logging
message should be displayed.

USBH_SetWarnFilter()
Sets the mask that defines which warning
message should be displayed.

USBH_AddLogFilter()
Adds an additional filter condition to the
mask which specifies the logging messages
that should be displayed.

USBH_AddWarnFilter()
Adds an additional filter condition to the
mask which specifies the warning messages
that should be displayed.

General debug functions/macros

USBH_LOG()
Called if the stack encounters a critical situ-
ation.

USBH_WARN()
Called if the stack encounters a critical situ-
ation.

USBH_PANIC()
Called if the stack encounters a critical situ-
ation.

Table 8.1: emUSB Host debugging API function overview
UM10001 - emUSB Host User Guide © 2009 SEGGER Microcontroller GmbH & Co. KG

111
8.3.1 USBH_SetLogFilter()
Description

Sets a mask that defines which logging message should be logged. Logging messages
are only available in debug builds of emUSB Host.

Prototype
void USBH_SetLogFilter(U32 FilterMask);

Parameter

Additional information

Should be called from USBH_X_Config(). By default, the filter condition
USBH_MTYPE_INIT is set.

Parameter Description

FilterMask Specifies which logging messages should be displayed.
Table 8.2: USBH_SetLogFilter() parameter list
UM10001 - emUSB Host User Guide © 2009 SEGGER Microcontroller GmbH & Co. KG

112 CHAPTER 8 Debugging
8.3.2 USBH_SetWarnFilter()
Description

Sets a mask that defines which warning messages should be logged. Warning mes-
sages are only available in debug builds of emUSB Host.

Prototype
void USBH_SetWarnFilter(U32 FilterMask);

Parameter

Additional information

Should be called from USBH_X_Config(). By default, all filter conditions are set.

Parameter Description

FilterMask Specifies which warning messages should be displayed.
Table 8.3: USBH_SetWarnFilter() parameter list
UM10001 - emUSB Host User Guide © 2009 SEGGER Microcontroller GmbH & Co. KG

113
8.3.3 USBH_AddLogFilter()
Description

Adds an additional filter condition to the mask which specifies the logging messages
that should be displayed.

Prototype
void USBH_AddLogFilter(U32 FilterMask);

Parameter

Additional information

USBH_AddLogFilter() can also be used to remove a filter condition which was set
before. It adds/removes the specified filter to/from the filter mask via a disjunction.

Parameter Description

FilterMask
Specifies which logging messages should be added to the filter
mask.

Table 8.4: USBH_AddLogFilter() parameter list
UM10001 - emUSB Host User Guide © 2009 SEGGER Microcontroller GmbH & Co. KG

114 CHAPTER 8 Debugging
8.3.4 USBH_AddWarnFilter()
Description

Adds an additional filter condition to the mask which specifies the warning messages
that should be displayed.

Prototype
void USBH_AddWarnFilter(U32 FilterMask);

Parameter

Additional information

USBH_AddWarnFilter() can also be used to remove a filter condition which was set
before. It adds/removes the specified filter to/from the filter mask via a disjunction.

Parameter Description

FilterMask
Specifies which warning messages should be added to the filter
mask.

Table 8.5: USBH_AddWarnFilter() parameter list
UM10001 - emUSB Host User Guide © 2009 SEGGER Microcontroller GmbH & Co. KG

115
8.3.5 USBH_LOG()
Description

This macro maps to a function in debug builds only. The function outputs logging
messages. In a release build, this macro is defined empty.

Prototype
USBH_LOG(const char * s);

Parameter

Parameter Description

s TBD
Table 8.6: USBH_LOG() parameter list
UM10001 - emUSB Host User Guide © 2009 SEGGER Microcontroller GmbH & Co. KG

116 CHAPTER 8 Debugging
8.3.6 USBH_WARN()
Description

This macro maps to a function in debug builds only. The function outputs warning
messages. In a release build, this macro is defined empty.

Prototype
USBH_WARN(const char * s);

Parameter

Parameter Description

s TBD
Table 8.7: USBH_WARN() parameter list
UM10001 - emUSB Host User Guide © 2009 SEGGER Microcontroller GmbH & Co. KG

117
8.3.7 USBH_PANIC()
Description

This macro is called by the stack code when it detects a situation that should not be
occurring and the stack can not continue. The intention for the USBH_PANIC() macro
is to invoke whatever debugger may be in use by the programmer. In this way, it acts
like an embedded breakpoint.

Prototype
USBH_PANIC (const char * sError);

Additional information

This macro maps to a function in debug builds only. If USBH_DEBUG > 0, the macro
maps to the stack internal function void USBH_Panic (const char * sError).
USBH_Panic() disables all interrupts to avoid further task switches, outputs sError
via terminal I/O and loops forever. When using an emulator, you should set a break-
point at the beginning of this routine or simply stop the program after a failure. The
error code is passed to the function as parameter.

In a release build, this macro is defined empty, so that no additional code will be
included by the linker.
UM10001 - emUSB Host User Guide © 2009 SEGGER Microcontroller GmbH & Co. KG

118 CHAPTER 8 Debugging
8.4 Message types
The same message types are used for log and warning messages. Separate filters
can be used for both log and warnings.

Symbolic name Description

USBH_MTYPE_INIT
Activates output of messages from the initial-
ization of the stack that should be logged.

USBH_MTYPE_CORE
Activates output of messages from the core of
the stack that should be logged.

USBH_MTYPE_ALLOC
Activates output of messages from the mem-
ory allocating module of the stack that should
be logged.

USBH_MTYPE_DRIVER
Activates output of messages from the driver
that should be logged.

USBH_MTYPE_MEM
Activates output of messages from the mem-
ory that should be logged.

USBH_MTYPE_OHCI
Activates output of messages from the Open
Host Controller Interface that should be
logged.

USBH_MTYPE_UBD

USBH_MTYPE_PNP

USBH_MTYPE_DEVICE

USBH_MTYPE_HUB

USBH_MTYPE_MSD

USBH_MTYPE_HID

USBH_MTYPE_APPLICATION
Table 8.8: USB Host message types
UM10001 - emUSB Host User Guide © 2009 SEGGER Microcontroller GmbH & Co. KG

119
Chapter 9

OS integration
emUSB Host is designed to be used in a multitasking environment. The interface to
the operating system is encapsulated in a single file, the IP/OS interface. For embOS,
all functions required for this IP/OS interface are implemented in a single file which
comes with emUSB Host.

This chapter provides descriptions of the functions required to fully support emUSB
Host in multitasking environments.
UM10001 - emUSB Host User Guide © 2009 SEGGER Microcontroller GmbH & Co. KG

120 CHAPTER 9 OS integration
9.1 General information
The complexity of the IP/OS Interface depends on the task model selected. All OS
interface functions for embOS are implemented in USBH_OS_embOS.c which is located
in the root folder of the IP stack.
UM10001 - emUSB Host User Guide © 2009 SEGGER Microcontroller GmbH & Co. KG

121
9.2 OS layer API functions

9.2.1 Examples
OS interface routine for embOS

Function Description

General macros
USBH_OS_Delay() Blocks the calling task for a given time.
USBH_OS_DisableInterrupt
()

Disables interrupts.

USBH_OS_EnableInterrupt(
)

Enables interrupts.

USBH_OS_GetTime32()

Returns the current system time in ticks. Return the
current system time in ms. On 32-bit systems, the
value will wrap around after approximately 49.7 days.
This is taken into account by the stack.

USBH_OS_Init()

Creates and initializes all objects required for task
synchronization. These are 2 events (for USBH_Task
and USBH_RxTask) and one semaphore for protection
of critical code which may not be executed from multi-
ple task at the same time.

USBH_OS_Lock()

The stack requires a single lock, typically a resource
semaphore or mutex. This function locks this object,
guarding sections of the stack code against other
tasks. If the entire stack executes from a single task,
no functionality is required here.

USBH_OS_Unlock()
Unlocks the single lock used locked by a previous call
to USBH_OS_Lock().
USBH_Task synchronization

USBH_OS_SignalNetEvent()
Wakes the USBH_Task if it is waiting for a NET-event or
timeout in the function USBH_OS_WaitNetEvent().

USBH_OS_WaitNetEvent()

Called from USBH_Task only. Blocks until the timeout
expires or a NET-event occurs, meaning
USBH_OS_SignalNetEvent() is called from an other
task or ISR.
USBH_RxTask synchronization

USBH_OS_SignalRxEvent()
Wakes the USBH_RxTask if it is waiting for a NET-event
or timeout in the function USBH_OS_WaitRxEvent().

USBH_OS_WaitRxEvent()

Optional. Called from USBH_RxTask, if it is used to
receive data. Blocks until the timeout expires or a
NET-event occurs, meaning
USBH_OS_SignalRxEvent() is called from the ISR.

Application task synchronization

USBH_OS_WaitItem()
Suspend a task which needs to wait for a object. This
object is identified by a pointer to it and can be of any
type, for example a socket.

USBH_OS_WaitItemTimed()

Suspend a task which needs to wait for a object. This
object is identified by a pointer to it and can be of any
type, for example a socket. The second parameter
defines the maximum time in timer ticks until the
event have to be signaled.

USBH_OS_SignalItem()
Sets an event object to signaled state, or resumes
tasks which are waiting at the event object. Function is
called from a task, not an ISR.

Table 9.1: Target OS interface function list
UM10001 - emUSB Host User Guide © 2009 SEGGER Microcontroller GmbH & Co. KG

122 CHAPTER 9 OS integration
All OS interface routines are implemented in USBH_OS_embOS.c which is located in the
root folder of the IP stack.
UM10001 - emUSB Host User Guide © 2009 SEGGER Microcontroller GmbH & Co. KG

123
Chapter 10

Performance & resource usage
This chapter covers the performance and resource usage of emUSB Host. It contains
information about the memory requirements in typical systems which can be used to
obtain sufficient estimates for most target systems.
UM10001 - emUSB Host User Guide © 2009 SEGGER Microcontroller GmbH & Co. KG

124 CHAPTER 10 Performance & resource usage
10.1 Memory footprint
emUSB Host is designed to fit many kinds of embedded design requirements. Several
features can be excluded from a build to get a minimal system. Note that the values
are only valid for the given configuration.

System

The following table shows the hardware and the toolchain details of the project:

10.1.1 ROM
The following table shows the ROM requirement of emUSB Host:

The memory requirements of a interface driver is about 1.5 - 2.0 Kbytes.

10.1.2 RAM
The following table shows the ROM requirement of emUSB Host:

The memory requirements of a interface driver is about 1.5 - 2.0 Kbytes.

* ROM size of emFile File system is app. 10KBytes

Detail Description

CPU ARM7
Tool chain IAR Embedded Workbench for Cortex-M3, V5.30
Compiler
options Highest size optimization;

Table 10.1: ARM7 sample configuration

Description ROM

emUSB-Host core incl. driver app. 20 KBytes
HID class support app. 5 KBytes
MSD class support app. 8 KBytes + sizeof(Filesystem)*

Description ROM

emUSB-Host core incl. driver app. 20 Kbytes
UM10001 - emUSB Host User Guide © 2009 SEGGER Microcontroller GmbH & Co. KG

125
10.2 Performance
System

The following table shows the send and receive speed of emUSB Host:

Detail Description

CPU ARM7 with integrated MAC running with 48Mhz
Tool chain IAR Embedded Workbench for Cortex-M3 V530
Compiler
options Highest speed optimization;

Table 10.2: ARM7 sample configuration

Description Speed

Bulk

Send speed 400-1000 KByte/sec
Receive speed 400-1000 KByte/sec
UM10001 - emUSB Host User Guide © 2009 SEGGER Microcontroller GmbH & Co. KG

126 CHAPTER 10 Performance & resource usage
UM10001 - emUSB Host User Guide © 2009 SEGGER Microcontroller GmbH & Co. KG

127
Chapter 11

Related Documents
� Universal Serial Bus Specification 1.1, http://www.usb.org
� Universal Serial Bus Specification 2.0, http://www.usb.org
� USB device class specifications (Audio, HID, Printer, etc.), http://www.usb.org
� USB 2.0, Hrsg. H. Kelm, Franzi�s Verlag, 2001, ISBN 3-7723-7965-6
UM10001 - emUSB Host User Guide © 2009 SEGGER Microcontroller GmbH & Co. KG

128 CHAPTER 11 Related Documents
UM10001 - emUSB Host User Guide © 2009 SEGGER Microcontroller GmbH & Co. KG

129
Chapter 12

Glossary
UM10001 - emUSB Host User Guide © 2009 SEGGER Microcontroller GmbH & Co. KG

130 CHAPTER 12 Glossary
CPU Central Processing Unit. The �brain� of a microcontroller; the
part of a processor that carries out instructions.

EOT End Of Transmission.

FIFO First-In, First-Out.

ISR
Interrupt Service Routine. The routine is called automatically
by the processor when an interrupt is acknowledged. ISRs
must preserve the entire context of a task (all registers).

RTOS Real-time Operating System.

Scheduler The program section of an RTOS that selects the active task,
based on which tasks are ready to run, their relative priorities,
and the scheduling system being used.

Stack An area of memory with LIFO storage of parameters, auto-
matic variables, return addresses, and other information that
needs to be maintained across function calls. In multitasking
systems, each task normally has its own stack.

Superloop A program that runs in an infinite loop and uses no real-time
kernel. ISRs are used for real-time parts of the software.

Task A program running on a processor. A multitasking system
allows multiple tasks to execute independently from one
another.

Tick The OS timer interrupt. Usually equals 1 ms.
UM10001 - emUSB Host User Guide © 2009 SEGGER Microcontroller GmbH & Co. KG

131
Index
C
Core data structures

URB ...68
USBH_BULK_INT_REQUEST61
USBH_CONTROL_REQUEST60
USBH_ENDPOINT_REQUEST64
USBH_ENUM_ERROR57
USBH_EP_MASK59
USBH_FUNCTION73
USBH_HEADER70
USBH_INTERFACE_INFO56
USBH_INTERFACE_MASK55
USBH_ISO_FRAME62
USBH_ISO_REQUEST63
USBH_PNP_EVENT72
USBH_PNP_NOTIFICATION69
USBH_POWER_STATE76
USBH_SET_CONFIGURATION65
USBH_SET_INTERFACE66
USBH_SET_POWER_STATE67
USBH_SPEED71

Core function types
USBH_ON_COMPLETION_FUNC80
USBH_ON_ENUM_ERROR_FUNC79
USBH_ON_PNP_EVENT_FUNC78

Core functions
USBH_CloseInterface()41
USBH_CreateInterfaceList()31
USBH_DestroyInterfaceList()32
USBH_EnumerateDevices()29
USBH_Exit()28
USBH_GetCurrentConfigurationDescriptor()

...43
USBH_GetDeviceDescriptor()42
USBH_GetEndpointDescriptor()45
USBH_GetFrameNumber()48
USBH_GetInterfaceDescriptor()44
USBH_GetInterfaceID()33
USBH_GetInterfaceIDByHandle()49
USBH_GetInterfaceInfo()34
USBH_GetSerialNumber46
USBH_GetSpeed()47
USBH_GetStatusStr()53

USBH_Init() 27
USBH_OpenInterface() 40
USBH_RegisterEnumErrorNotification() 37
USBH_RegisterPnPNotification() 35
USBH_RestartEnumError() 39
USBH_SetTraceMask() 51
USBH_SubmitUrb() 50
USBH_UnregisterEnumErrorNotification() .

38
USBH_UnregisterPnPNotification() 36

E
emUSB Host

Features .. 10
Integrating into your system 16

M
MSD error codes

USBH_MSD_STATUS_COMMAND_FAILED 99
USBH_MSD_STATUS_ERROR 99
USBH_MSD_STATUS_INTERFACE_PROTOCO

L ... 99
USBH_MSD_STATUS_INTERFACE_SUB_CLA

SS ... 99
USBH_MSD_STATUS_LENGTH 99
USBH_MSD_STATUS_PARAMETER 99
USBH_MSD_STATUS_PIPE_STALLED ... 99
USBH_MSD_STATUS_SENSE_REPEAT .100
USBH_MSD_STATUS_SENSE_STOP100
USBH_MSD_STATUS_SUCCESS 99
USBH_MSD_STATUS_TIMEOUT 99
USBH_MSD_STATUS_TRANSMISSION .. 99
USBH_MSD_STATUS_WRITE_PROTECT 100

MSD functions
USBH_MSD_AddDevice() 89
USBH_MSD_GetLuns() 91
USBH_MSD_GetStatus() 95
USBH_MSD_GetUnitInfo() 94
USBH_MSD_Init() 88
USBH_MSD_ReadSectors() 92
USBH_MSD_RemoveDevice() 90
USBH_MSD_UNIT_INFO 97
UM10001 - emUSB Host User Guide © 2009 SEGGER Microcontroller GmbH & Co. KG

132 Index
USBH_MSD_WriteSectors() 93

O
OS integration

API functions 121

S
Syntax, conventions used5
UM10001 - emUSB Host User Guide © 2009 SEGGER Microcontroller GmbH & Co. KG

	About this document
	Table of Contents
	Introduction to emUSB Host
	1.1 What is emUSB Host
	1.2 Features
	1.3 Basic concepts
	1.4 Further reading
	1.4.1 Related books

	1.5 Development environment (compiler)

	Running emUSB Host on target hardware
	2.1 Step 1: Open an embOS start project
	2.2 Step 2: Adding emUSB Host to the start project
	2.3 Step 3: Build the project and test it

	Example applications
	3.1 Overview
	3.1.1 emUSB Host HID (TBD FileName)

	USB Host Core Functions
	4.1 Management Functions
	4.1.1 USBH_Init()
	4.1.2 USBH_Exit()
	4.1.3 USBH_EnumerateDevices()

	4.2 API Functions
	4.2.1 USBH_CreateInterfaceList()
	4.2.2 USBH_DestroyInterfaceList()
	4.2.3 USBH_GetInterfaceID()
	4.2.4 USBH_GetInterfaceInfo()
	4.2.5 USBH_RegisterPnPNotification()
	4.2.6 USBH_UnregisterPnPNotification()
	4.2.7 USBH_RegisterEnumErrorNotification()
	4.2.8 USBH_UnregisterEnumErrorNotification()
	4.2.9 USBH_RestartEnumError()
	4.2.10 USBH_OpenInterface()
	4.2.11 USBH_CloseInterface()
	4.2.12 USBH_GetDeviceDescriptor()
	4.2.13 USBH_GetCurrentConfigurationDescriptor()
	4.2.14 USBH_GetInterfaceDescriptor()
	4.2.15 USBH_GetEndpointDescriptor()
	4.2.16 USBH_GetSerialNumber()
	4.2.17 USBH_GetSpeed()
	4.2.18 USBH_GetFrameNumber()
	4.2.19 USBH_GetInterfaceIDByHandle()
	4.2.20 USBH_SubmitUrb()
	4.2.21 USBH_SetTraceMask()
	4.2.22 USBH_GetStatusStr()

	4.3 Data Structures
	4.3.1 USBH_INTERFACE_MASK
	4.3.2 USBH_INTERFACE_INFO
	4.3.3 USBH_ENUM_ERROR
	4.3.4 USBH_EP_MASK
	4.3.5 USBH_CONTROL_REQUEST
	4.3.6 USBH_BULK_INT_REQUEST
	4.3.7 USBH_ISO_FRAME
	4.3.8 USBH_ISO_REQUEST
	4.3.9 USBH_ENDPOINT_REQUEST
	4.3.10 USBH_SET_CONFIGURATION
	4.3.11 USBH_SET_INTERFACE
	4.3.12 USBH_SET_POWER_STATE
	4.3.13 URB
	4.3.14 USBH_PNP_NOTIFICATION
	4.3.15 USBH_HEADER
	4.3.16 USBH_SPEED
	4.3.17 USBH_PNP_EVENT
	4.3.18 USBH_FUNCTION
	4.3.19 USBH_POWER_STATE

	4.4 Function Types
	4.4.1 USBH_ON_PNP_EVENT_FUNC
	4.4.2 USBH_ON_ENUM_ERROR_FUNC
	4.4.3 USBH_ON_COMPLETION_FUNC

	4.5 Use of undocumented functions

	Mass Storage Device
	5.1 Introduction
	5.2 Overview
	5.2.1 Features
	5.2.2 Restrictions

	5.3 Supported Protocols
	5.4 USB Host MSD Core Functions
	5.4.1 API Functions
	5.4.2 Data Structures
	5.4.3 Error Codes

	Human Interface Device
	6.1 TBD

	Configuring emUSB Host
	7.1 Runtime configuration
	7.1.1 Driver handling

	7.2 Compile-time configuration
	7.2.1 Compile-time configuration switches
	7.2.2 Debug level

	Debugging
	8.1 Message output
	8.2 Testing stability
	8.3 API functions
	8.3.1 USBH_SetLogFilter()
	8.3.2 USBH_SetWarnFilter()
	8.3.3 USBH_AddLogFilter()
	8.3.4 USBH_AddWarnFilter()
	8.3.5 USBH_LOG()
	8.3.6 USBH_WARN()
	8.3.7 USBH_PANIC()

	8.4 Message types

	OS integration
	9.1 General information
	9.2 OS layer API functions
	9.2.1 Examples

	Performance & resource usage
	10.1 Memory footprint
	10.1.1 ROM
	10.1.2 RAM

	10.2 Performance

	Related Documents
	Glossary
	Index

